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ABSTRACT
Several hundred thousand students drop out of high school
every year in the United States. Interventions can help those
who are falling behind in their educational goals, but given
limited resources, such programs must focus on the right
students, at the right time, and with the right message. In
this paper, we describe an incremental approach that can
be used to select and prioritize students who may be at
risk of not graduating high school on time, and to suggest
what may be the predictors of particular students going off-
track. These predictions can then be used to inform targeted
interventions for these students, hopefully leading to better
outcomes.
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J.1 [Administrative Data Processing]: Education; K.3.0
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1. INTRODUCTION
Although high school graduation rates in the United States

have been slowly but steadily increasing during the past
decade, over 700,000 students per year still do not graduate
high school within four years of entering it [20]. Students
who take longer than four years to graduate can create large
economic strains on school districts; moreover, high school
drop-outs have markedly higher rates of incarceration and
poverty compared to high school graduates [1, 14]. The
causes for not graduating high school on time are diverse,
including poor academic performance, conflicts with peers
and family members, lack of interest, and unexpected life
disturbances [8, 12, 17].

Recent research has found these diverse causes often man-
ifest themselves through common sets of indicators routinely
recorded by schools such as students’ attendance, behavior,
and coursework [5, 6]. Consequently, school districts have
been increasingly using these readily available indicators to
help identify at-risk students. For instance, school districts
from 31 states used some type of early warning system in
2012, up from 18 states in 2011 [11]. These Early Warning
Indicator (EWI) systems are currently built in vastly dif-
ferent ways, as indicated by Bowers et al.’s recent review
of 36 studies on this topic [9]. However, a common theme
among these studies is that they often make binary, rather
than continuous or ranked, predictions: a student is either
predicted as likely to graduate or not.

We built upon this considerable prior literature on EWIs
and aimed to extend it in three substantial ways. First, we
developed predictive models of high school graduation using
machine learning approaches that can identify at-risk stu-
dents more accurately than prior analytic approaches. Sec-
ond, we developed urgency score models that can rank at-
risk students based on when those students are most likely to
go off track. Third, we developed a prototype user-interface
to help teachers and administrators better understand the
various factors contributing most to our models’ predictions.
This three-step approach could help schools more efficiently
allocate limited resources by prioritizing which students are
most in need of help and target intervention programs to
match those students’ particular needs.

We partnered with a large school district in the mid-
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Atlantic region, enrolling over 150,000 students, and were
provided de-identified, student-level longitudinal data for a
cohort of approximately 11,000 students who were tracked
from 6th to 12th grade. Using this data, this paper describes
our approach to early identification of the students who are
at risk of dropping out, prioritizing these students based on
the level of that risk, predicting the urgency and timing of
the dropout, and informing schools with the particular indi-
cators for each prediction.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews selected studies from recent related literature.
Section 3 describes our dataset in detail. Sections 4, 5, and
6 describe our proposed data analysis approach, preliminary
results, and a mock-up interface. Section 7 ends with our
conclusions and directions for future work.

2. RELATED WORK
Decades of research has investigated the various causes

and predictors of on-time high school graduation [17]. Many
scholars, especially in the most recent years, have proposed
that school districts should use this research knowledge by
implementing EWI systems. Bowers et al. [9] systemati-
cally reviewed this vast literature on predicting high school
graduation by quantitatively synthesizing the predictive ac-
curacy of 110 early warning flags across 36 studies. These
studies found that many factors can serve as effective EWIs,
including those routinely recorded by schools such as having
high absence rates or low grades.

Bowers et al.’s review [9] found these studies used EWIs
in a variety of ways. For instance, some studies created com-
posite at-risk indicators based on the intersection of EWIs
(e.g., having BOTH high absence rates and low grades),
while other studies used the union of EWIs (e.g., having
high absence rates AND/OR low grades). Consequently,
these studies widely vary in performance. Rather than using
the simple intersection or union of EWIs, we used machine
learning methods such as random forests [10] to optimally
combine these EWIs when forming composite indicators.

Although these EWIs may accurately predict high school
drop-out, they do not always reveal the root causes of stu-
dents’ needs [8, 12, 17]. For example, although low grades
are highly predictive of drop-out, students may earn low
grades for a variety of academic and non-academic reasons
(e.g., lack of mathematical proficiency, conflicts at home
or with peers). Nevertheless, these indicators could help
teachers and administrators form initial hypotheses about
the needs of particular students. To illustrate, a student
whose grades sharply declined between middle school and
high school might have struggled adapting to the new so-
cial and academic environment [5, 7]. We therefore created
a prototype of a student dashboard that could help teach-
ers and administrators form these insights when reviewing
student records. These insights could help match at-risk
students with appropriate intervention programs. Prior im-
plementation guides on EWIs [18] have detailed how these
integrated analytic approaches can lead to a comprehensive
set of actions for addressing particular students needs.

2.1 District-level Work
In 2013, our partner school district investigated linkages

between grades 1, 3, 6, 9, and final graduation status for two
cohorts of students [21]. The results of the study showed
that the characteristics of those who drop out of school fell

under three categories: attendance, behavior, and course-
work (ABC’s). Essentially, with respect to these, students
who drop out of school were determined to exhibit a pat-
tern of behaviors that were generally identifiable in advance
of them dropping out of school completely.

Following the findings of West [21], the school district is
developing an EWI system for students across all grade lev-
els (elementary through high school). However, rather than
focusing only on dropouts, the district would also like to
identify students who stay in school, but need extra support
for future success. For example, academic performance and
attendance were significantly correlated to the amount of
time until achieving a bachelor’s degree for one cohort of stu-
dents [22]. Furthermore, the progressive EWI system goes
beyond the ABC’s and includes other factors (e.g. mobil-
ity; new to the district) reported in the literature to impact
student performance [16, 15].

3. DATA
We received a dataset containing de-identified information

for nearly 11,000 students who were expected to graduate in
2013. Most students were tracked from 6th to 12thgrade,
while some arrived throughout the study and had missing
data for any years prior to enrollment. Figure 1 illustrates
the student flow in and out of the school district over time.

Figure 1: Student enrollment flow over time.

The vast majority of the students (highlighted in blue)
flow in and out of the system according to the expected
schedule. In green, we see that small subsets of students
enter the district at the beginning of each academic year,
with a noticeably larger group of incoming students being
observed in 9th grade. Lastly, in red, we show the subset of
students who did not graduate on time, either by dropping
out or continuing in school beyond the fourth high school
year. Overall, this lastly described subset accounts for a
total of 12.4% of the student population.

End of year data were captured as students progressed
towards their high school graduation. Given that the dis-
trict already had an EWI system prototype, the features we
chose to focus most of our attention on were attendance, aca-
demic performance, behavior, mobility, and a few aspects of
demographics. The features were selected based on the ex-
amination of previous studies from other school districts as
well as factors found to impact students in specific districts
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Name Type Description Available On

gender Binary Student’s gender 6th - 12th

birth Numeric Student’s birth year and month 6th - 12th

ssname Nominal Name of school where student is enrolled 6th - 12th

absrate Numeric Student’s absence rate for a given academic year 6th - 12th

tardyr Numeric Student’s tardiness rate for the academic year 6th - 8th

nsusp Numeric Number of suspension incidents 6th - 12th

mobility Numeric Cumulative to date number of unexpected entries or withdrawals 6th - 12th

new Binary Flag to denote if the student is new to the school district 9th - 12th

q1-4gpa Numeric Quarter Marking Period Averages 6th - 12th

gmapr Numeric MAP-R National Percentile Ranks 6th - 8th

gmsam Numeric Maryland School Assessment in Math Proficiency Level 6th - 8th

psatv Numeric PSAT Critical Reading 10th

psatm Numeric PSAT Math 10th

retained Binary Flag to denote if the student was ever retained to date in a grade 9th - 12th

grad Binary Flag to denote if the student graduated from high school on time 12th

Table 1: Description of dataset features.

served by our partners. It is worth noting that the tech-
niques described in this paper are not limited to only using
these types of features, and future work includes expanding
to other forms of data about students, their behaviors, and
their environments.

Table 1 contains a brief description of the data we utilized.
Note that most information is available on a yearly basis
starting at 6th grade, with the exception of a few features
such as PSAT scores and Measures of Academic Progress
(MAP) percentile ranks that only exist for a subset of the
grades. Additionally, as performance marks were available
quarterly, each was represented by four distinct features per
student for each academic year in the dataset.

3.1 Preliminary Analysis
Given that one of our goals was to design and evaluate

predictive models that would aid in the early detection of
students that are at risk of not graduating high school on
time, one of our first tasks was to do a preliminary analysis
to see if any aspects of the available data were particularly
important in predicting risk. Table 2 summarizes the re-
sults of that experiment, wherein we ranked features in the
order of their importance, as we attempted to infer on-time
graduation – grad flag in Table 1 – with respect to four
metrics: information gain (IG), gini impurity (GI), stepwise
regression (SR) and single feature performance (SFP1).

Rank IG GI SR SFP

1 q1-4gpa retained q1-4gpa q1-4gpa
2 gmapr q1-4gpa gmsam mobility
3 retained gmapr gmapr nsusp
4 birth absrate retained absrate
5 absrate birth birth ssname

Table 2: Feature importance rankings.

Aggregating students based on some of the features pro-
vided interesting insights that were previously not known.
For example, as illustrated in Figure 2, students who did
not move across different schools (or who moved a small
number of times) appear to be more likely to graduate from

1This consisted of evaluating a logistic regression trained
with each feature individually.

high school on time, whereas the opposite seems to be true
for students with higher mobility values. We also found ev-
idence supporting more obvious relationships such as the
correlation between GPA and likelihood of graduating on
time (Figure 3).
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Figure 2: Student mobility values vs. on-time grad-
uation rates. Mobility is the number of times a stu-
dent unexpectedly switched schools. The shaded re-
gion corresponds to 95% CIs.

4. WHO?
In an ideal scenario, school districts would have sufficient

resources to provide each and every student with individu-
alized mentoring programs. However, given notable budget
constraints, many schools must instead use these programs
to focus on students who are most at risk of not graduating
on time. As discussed by Gleason and Dynarski [13], sec-
ondary schools may miss important opportunities to help at
risk students when students who are on track to graduation
are mislabeled.

To help prioritize such efforts, our district partners devel-
oped an early warning system to flag potentially at risk stu-
dents. These flags can be generated yearly2 so that schools

2More specifically, these flags are generated quarterly but
can be consulted in an yearly basis.
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Figure 3: Student GPAs (binned) vs. on-time grad-
uation rates. The shaded region corresponds to 95%
CIs.

can monitor their students and take immediate action when
necessary.

We compared this existing system with more sophisticated
machine learning models for estimating risk scores (i.e., pre-
dicted probabilities of not graduating high school on time).
To assign risk scores, these models used all available infor-
mation about students at the end of each academic year.
One key difference between our models and those used by
our partner is that we used all the available historical data.
For instance, the early warning model used at the end of 9th

grade used all available data from 6th to 9th grade.
We evaluated these models’ performance by computing

the precision at top k%, which is the predictive accuracy
within the models’ top k% most confident predictions. As
illustrated in Figure 4, we determined what percentage of
students within the top 10% (i.e., those with the highest
risk scores) ultimately did not graduate on time. The choice
of this metric reflected the reality that many schools can
only intervene on a small percentage of their entire student
body3.

Risk scores were estimated using 10-fold cross validation
to ensure that the student instances being evaluated at each
iteration were held out of the training set. Though we tested
a variety of classification methods, the results presented here
concern random forest models which were most precise [10],
and logistic regression models which were more interpretable
while still performing well.

4.1 Results
Figure 5 shows that the machine learning models per-

formed noticeably better than our partner’s existing rule-
based model. For example, in the 10th grade models, the
random forest and logistic regression models performed at
75% and 74% respectively, whereas the existing model per-
formed at 38%.

3We used k=10 in this paper somewhat arbitrarily, though
based on interviews we conducted for a parallel project, that
seems to be an adequate estimate of how many students
schools can typically place on intervention programs.

NOT on-�meOn-�me

ID
Model 2 

Score

38 97

47 96

34 91

48 88

23 85

29 84

8 81

32 77

12 72

1 70

Precision
8/10 = 80%

ID
Model 1 

Score

38 98

47 95

12 89

9 87

32 84

29 81

15 81

22 75

27 72

44 72

Precision
6/10 = 60%

Figure 4: Precision at top 10% metric explained for
a cohort of 100 students.

Figure 5: Precision of models for each grade level.

Our models, which used students’ historical data, consis-
tently improved over time as the models continued to use
more information about each student. However, this trend
was not consistently observed for the existing model (blue
line), which did not use historical data (e.g., the 9th grade
model only used 9th grade GPAs). This model’s perfor-
mance notably dropped from 9th to 10th grade. These re-
sults suggest the value of using all available historical infor-
mation about each student.

Figures 6 and 7 help show what kinds of students are
ranked higher by our models. These figures mirror Figures
2 and 3 but are based on the top decile of predicted risk
scores (based on random forest models), rather than the
observed outcome of not graduating on time. As shown,
student-level features (e.g., mobility, GPA) have a similar
relationship with our models’ risk scores (Figures 6 & 7) as
with observed outcomes of not graduating on time. This
result was expected and helps confirm that the models are
learning important relationships that exist in the data.

4.2 Stability of Models
We also investigated how stable our models were across

time (i.e., how much risk scores for a given student var-
ied from grade to grade). A more stable model could allow
schools to more consistently focus efforts on students iden-
tified by our system, without worrying about continuously
switching their focus. To examine stability, we counted the
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Figure 6: Student mobility vs. high-risk rates. Mo-
bility is the number of times a student unexpectedly
switched schools. The shaded region corresponds to
95% CIs.
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Figure 7: Student GPAs (binned) vs. high-risk
rates. The shaded region corresponds to 95% CIs.

number of transitions that students made between three dif-
ferent risk categories (high, moderate, and low) from year to
year. For example, the below path includes two transitions:

high→ high→ moderate→ moderate→ moderate→ high

We defined high risk as the top 10% of risk scores, mod-
erate risk as the following 20%, and all other students were
low risk4. We found that in their EWI model, most stu-
dents (63%) made at least one transition between different
risk categories over time, and 25% of students made three
or more transitions. In contrast, our random forest model
was more stable, with 40% of the students making at least
one transition and 10% making three or more. Hence, the
random forest models were likely more robust to small fluc-
tuations in data items such as GPA. In the future, we plan to
validate the model transitions with empirical evidence from
teachers and parents.

4These cutoffs were chosen to remain consistent with cate-
gories already developed for our partner’s existing system.

Number of
Transitions

Current EWI
Random

Forest Model

0 37% 60%
1 19% 17%
2 19% 14%
3 15% 6%
4 7% 2.7%

5+ 3% 0.3%

Table 3: Percentage of students moving across dif-
ferent risk groups over time.

4.3 Identifying dropout students in isolation
Thus far, we have described a machine learning approach

to identifying students who are at risk of not graduating high
school on time (combined group), either because they drop
out (drop out group) or remain in the high school system for
more than four years (remain group). Certain schools may
wish to place special emphasis on identifying drop outs, since
they lose contact with those students. For this, we used the
same approach described above, but attempted to classify
only those students who drop out. From a machine learning
perspective, this classification may be more difficult because
there is a smaller group of students to identify, but on the
other hand, it could be easier because this distinction may
increase the homogeneity of the groups. For comparison, we
also used this approach to classify the remain group vs. all
other students. According to the area under the curve of the
receiver operating characteristic (AUROC – a normalized
metric for comparing classifier performance across different
scenarios; for details on using this metric in the context of
early warning identification see [9]), this approach was simi-
lar in accuracy for classifying the combined group (0.89) and
the drop out group (0.89), but was slightly worse for the
remain group (0.83), though still far better than random
guessing (0.5). Thus, depending on the interests and needs
of the school district, this approach shows promise for iden-
tifying students who are likely to have various undesirable
outcomes, so that help can be provided as early as possible.

5. WHEN?
In the previous section, we discussed in detail the meth-

ods that we employ to identify those students who are at
risk of not graduating high school on time. In addition, we
also demonstrated that such models can outperform more
simplistic rule-based methods that are often the first choice
among school districts implementing EWIs. While it is im-
portant to identify those students who are at risk, however,
the problem does not end there. Often the volume of stu-
dents at risk is such that schools may have difficulty estimat-
ing who may be in most immediate need. We mentioned in
the previous sections that our dataset was comprised of ap-
proximately 11,000 students. As we subsequently ranked
10% of these students as being at highest risk, the group
reduced to having 1,100 students. Providing mentoring and
interventions to such sizable set of students is a non-trivial
task, and automating a prioritization process can greatly
improve efficiency.

5.1 Understanding priority
An interesting question that arises in this context is How
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do we further prioritize students at risk ? A straightforward
way to do that is to rank students based on their risk scores
(discussed in the previous section). Though this is an ade-
quate measure, it would be useful to understand if we could
incorporate other notions (and not just risk of not graduat-
ing on-time) into the picture. For that purpose, we decided
to use a metric that we will call Time to off-track. To
illustrate this concept, let us first define the term off-track.
A student can be categorized as off-track if he or she is re-
tained (or drops out) at the end of some grade level. It is
ideal to provide interventions to students before either of
these undesired outcomes, as opposed to taking a more re-
active approach. In other words, access to the appropriate
interventions should be provided to at-risk students before
they go off-track. We define Time to off-track as the interval
between the current instant and the point at which a student
goes off-track for the first time (assuming the student has
not yet gone off-track). The smaller the time to off-track,
the sooner the student is likely to be at risk.

To understand the motivation behind this metric, let us
consider a scenario where two students are classified as being
at-risk by our predictive models and let us assume that there
is scope to provide help to only one student. In this case,
it makes more sense to provide help to that student who is
likely to go off-track sooner.

The formulation of this problem boils down to predicting
time to off-track for at-risk students at the end of every
grade. For instance, at the end of grade 8, for each student
at risk of not graduating on time, we need to assign a label
between 1 to 5 where 1 indicates that a student is likely to
go off-track by the end of next year (at the end of grade 9),
2 indicates that a student is likely to go off-track at the end
of grade 10, and so on.

It should be noted that, since in the previous example we
start at the end of grade 8, we should only have 4 labels, one
for each subsequent grade level. However, in that context,
we use a label of 5 to indicate that a student is not off-track
until the end of high school (likely indicating a possible re-
tention in grade 12). We have analogous prediction task
formulations for every grade. We further highlight that our
dataset does not contain any students who go off-track be-
fore the end of grade 9. It is important to bear in mind that
this prioritization task is carried out only for those students
that were previously classified as at high risk (top 10%) by
the predictive models discussed in the previous section.

5.2 Risk scores as a proxy for time to off-track
Now that we have defined a metric for prioritizing stu-

dents, it is still not out-of-place to ask the question Does a
higher risk score imply a shorter time to off-track ? That
is, can we assume that students who were given high risk
scores by our predictive models are more likely to go off-
track sooner than those with lower risk scores? If that is the
case, we do not need any other models for predicting time
to off-track, and we can use the setup from the previous
section to guide the prioritization for interventions. In or-
der to validate this idea, we carried out multiple experiments
with the objective of computing the correlation between risk
scores and time to off-track using multiple metrics such as
Pearson’s and Spearman’s rank correlation coefficients.

We note that risk scores are continuous values by defini-
tion, while time to off-track assumes discrete values start-
ing with a minimum of 1. For that reason we computed

correlations twice. The first experiments kept these scales
unchanged, whereas for the second iteration we discretized
the risk scores.

Figure 8: Correlation between risk scores & time to
off-track.

Figure 9: Accuracy predicting time to off-track.

Figure 10: Mean Absolute Error predicting time to
off-track.

Figure 8 shows the results of these experiments with Pear-
son’s correlation coefficient. It can be seen from Figure 8
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that there does not exist a high correlation between risk
scores and time to off-track from grade 6 through to grade
10. However, it can be seen that using data up until grade 11
and predicting time to off-track results in a higher correla-
tion with risk scores (∼ 0.5). This behavior can be explained
by the fact that when we consider all the data collected be-
fore the end of grade 11, predicting time to off-track is tan-
tamount to predicting if a student will be retained in grade
12 (and thus not graduate on time) or not. In other words,
this is equivalent to the task of predicting if a student is
at risk of not graduating on time. For all the other grades
except grade 11, the correlation coefficient values are quite
small. This analysis reveals that risk scores do not serve as a
reliable proxy for time to off-track, thus motivating the need
for building new prediction models for the task at hand.

5.3 Predicting time to off-track
Recall that the idea of this second-step prioritization is to

take the set of students classified as being at high risk by our
risk prediction models (discussed in the previous section) at
the end of each year and further predict the time to off-track
for each of them. This essentially means that this task will
be carried out at 5 different time stamps, one for the end of
each grade starting from grade 6 to grade 11. Each of these
tasks predicts if an at-risk student is likely to go off-track
after one, two, three, or more years. The variable time to
off-track takes a value between 1 and (12 - current grade)
+ 1 for each at-risk student, 1 denoting that the student is
likely to go off-track by the end of next year and (12 - current
grade) denoting that the student is likely to go off-track at
the end of 12th grade. The value (12 - current grade) + 1
indicates that the student is unlikely to go off-track.

Now that we have established the background for the pre-
diction tasks, let us consider the technical aspects. Since
this is a prediction task, we can use a classification algo-
rithm such as logistic regression, decision trees, or random
forests for solving this problem. However, another interest-
ing detail to note here is that time to off-track is an ordinal
(rather than categorical) variable. This means that there
is an inherent ordering on the values that time to off-track
takes and values that are closer to each other are more sim-
ilar than others. For example, time to off-track values of
1 and 2 are more similar to one another than are 1 and 5.
For this reason, classification frameworks that treat labels
as categorical variables might not be the optimal choice in
this context. Therefore, we also consider ordinal classifi-
cation methods which assume that the outcome labels are
ordered for our analysis. In addition to these two classes
of techniques, we also investigate the usefulness of models
from the survival analysis literature such as Cox regression,
which can be readily applied to this scenario.

In order to evaluate these various classes of models, we
rely on two metrics:

• Accuracy : This metric is a statistical measure for quan-
tifying the degree of correctness with which a predic-
tion model is able to label the data points. Let ai be
the actual ground truth label for a student i and let pi
be the prediction. Assuming that there are N at-risk
students, accuracy can be written as:

Accuracy =

∑
i I(ai = pi)

N

where I() is an indicator function that results in 1 if

the condition is met and a 0 otherwise. The higher
the accuracy, the better the prediction model. Though
accuracy is a very widely used metric and is very useful
in practice, it is also a very conservative metric in this
context. To illustrate, let us consider a student i with a
time to off-track value of 2 indicating that the student
actually dropped out 2 years from the current year
under consideration. If the predicted value for this
student turns out to be 3 instead of 2, the accuracy
metric penalizes this because the predicted value is
not equal to the actual outcome. Further, the metric
does not distinguish between the magnitude of errors.
In the case of a student i, a predicted value of 3 and
a predicted value of 5 are both penalized. However,
since we are dealing with an ordinal scale, a predicted
value of 5 is much worse than a predicted value of 3,
as 3 is closer to the ground truth label of 2 than 5 is.

• Mean Absolute Error (MAE): This metric is a statis-
tical measure of the degree of closeness between the
actual outcome and the predicted outcome. With the
notation defined above, MAE can be defined as:

MAE =
1

N

∑
i

|ai − pi|

The lower the value of MAE, the better the prediction
model. It can be seen that this metric incorporates the
magnitude of difference when penalizing prediction er-
rors. For example, this metric penalizes the predicted
value of 5 much more than the predicted value of 3
when the ground truth label is 2.

The results of this prediction task using classification frame-
works (logistic regression), survival analysis techniques (Cox
regression) and ordinal regression methods (ordinal regres-
sion trees) are shown in Figures 9 and 10. In addition,
we also present the results from using the discretized risk
scores as a proxy for time to off-track. Figure 9 encapsu-
lates the accuracy metric, and Figure 10 presents the MAE
metric. It can be seen that ordinal regression-tree based
models outperform traditional classification, survival anal-
ysis techniques, and the risk score baseline. The baseline
exhibits inferior performance both in terms of accuracy and
MAE. Lastly, we also see that survival analysis techniques
slightly outperform traditional classification.

6. WHY?
In the previous two sections we outlined methods that

can be used by high schools to identify which students are
at high academic risk, and from that subset, who may need
attention most immediately. Knowing that information is
extremely valuable and it helps schools to not only make
better use of their resources, but it also provides a means to
prioritize intervention efforts. This section will address the
last step of our overall methodology: suggesting the appro-
priate context for interventions.

A variety of factors may contribute to a student’s decision
to drop out of high school, and as shown by Alexander et
al. [4], these factors may independently affect a student’s
trajectory. Hence, knowing which features contributed to-
wards a student’s high risk scores can alert counselors of
what would potentially be the most beneficial interventions
to suggest.
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With that in mind, we developed a web-based dashboard
application, illustrated in Figure 11, that helps educators
dive into detailed breakdowns of their students’ reported
risk scores. While these measurements are not informative
in isolation, being able to see a student’s risk score trajectory
over time, as well as his or her grade, absence, and mobility
history can be of great help when attempting to define what
form of intervention may be most appropriate for each case.

It is important to note that these indicators are not rea-
sons for dropping out but have been found as leading indica-
tors (and predictors) for the predictions made by our models.
Our future work includes using these initial hypotheses to
design experiments to see which of these could be causal fac-
tors leading to dropout and working with schools to design
effective interventions targeting these factors.

A live demo of our dashboard created with artificial data
is accessible at [3]. There, as well as in the few static screen-
shots seen in Figure 11, we highlight that the major intent
was to ensure the simplicity and user friendliness of this in-
terface. Students can be quickly selected from a list that
that is sorted based on risk scores, and upon selection, a
categorized breakdown of that student’s historic data is dis-
played with each category being dynamically color-coded to
indicate how many standard deviations that student’s data
values are from the overall mean. The entire code used to
create this dashboard has been made open source and can
be found at [2].

7. SO WHAT?
We have shown two key ideas in this paper that can help

schools graduate more students on-time. The first one is to
produce a ranked list that orders students according to their
risk of not graduating on time. The second one is to predict
when they’ll go off track, to help schools plan the urgency
of the interventions. Both of these predictions are useful in
identification and prioritization of students at risk and al-
low the schools to target interventions. The eventual goal
of these efforts is to focus the limited resources of schools to
increase graduation rates. In order to achieve that goal, it’s
important to consider the impact of interventions and match
them with students effectively. One of the key next steps in
our effort is to build“persuasion”models that can be be used
to rank students in terms of how much they will be impacted
by a given intervention, allowing schools to identify students
who are most likely to respond to specific programs. This
will require experiments to be conducted testing interven-
tions and the use of machine learning approaches to build
the persuasion models.

Another important future direction is to define a set of
interventions (i.e. what types, how to deliver them, who
is involved, how often are they delivered, etc.) and use stu-
dent data to predict the optimal set of interventions for each
student. This will allow schools to personalize the interven-
tions and increase the chances of improving outcomes for
more students who are at risk of dropping out.

7.1 Benefits to the school district
The results of this study have helped the school district

systematically adjust analytical methods as they continue to
build a universal EWI system. Based on the findings of our
work, the school district moved from a rule-based model to
applying a logistic regression model for the second prototype
of their EWI system. The revisions to the model were ap-

plied to all students in the district with the intent of rolling
out a fully operational EWI system in the Fall of 2014. Ad-
ditionally, given the high performance associated with the
Random Forest model, the district is currently planning to
investigate its application for future work.

In addition to modifying the analytical methods currently
employed, the ability to predict time to off-track, would
serve the school district well as it relates to allocating re-
sources. With its preliminary EWI prototype, the school
district was asked to assist in identifying those students who
were deemed as priority for providing an intervention. While
the focus of the district-developed EWI system is to provide
support for all students, it is recognized that there may be a
need to prioritize support to students who are identified at
higher risk and/or more urgent. The district intends to fur-
ther investigate the application of this metric to the student
population.

Finally, the district is also highly interested in the web-
based dashboard application that was developed. Graphic
portrayal of the data not only helped to concisely summa-
rize the data, but drew attention to the important features of
a given student’s record. The options for visually display-
ing data related to an EWI system revealed the potential
for creating a dynamic interface that allows for elucidating,
interpreting, and analyzing the information from a new per-
spective. The school district recognizes that a web-based
system that connects multiple data points for all students
can serve as a valuable resource for not only school-based
staff, but also district leaders.
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