
Improving Student Modeling Through
Partial Credit and Problem Difficulty

Korinn Ostrow, Christopher Donnelly, Seth Adjei, Neil Heffernan
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609

{ksostrow, cdonnelly, saadjei, nth}@wpi.edu

ABSTRACT
Student modeling within intelligent tutoring systems is a
task largely driven by binary models that predict student
knowledge or next problem correctness (i.e., Knowledge
Tracing (KT)). However, using a binary construct for
student assessment often causes researchers to overlook the
feedback innate to these platforms. The present study
considers a novel method of tabling an algorithmically
determined partial credit score and problem difficulty bin
for each student’s current problem to predict both binary
and partial next problem correctness. This study was
conducted using log files from ASSISTments, an adaptive
mathematics tutor, from the 2012-2013 school year. The
dataset consisted of 338,297 problem logs linked to 15,253
unique student identification numbers. Findings suggest
that an efficiently tabled model considering partial credit
and problem difficulty performs about as well as KT on
binary predictions of next problem correctness. This
method provides the groundwork for modifying KT in an
attempt to optimize student modeling.

Author Keywords
Student modeling; tabling method; partial credit; problem
difficulty; next problem correctness; knowledge tracing

ACM Classification Keywords
K.3.1 Computer Uses in Education, I.2.6 Learning, I.6.4.
Model Validation and Analysis

INTRODUCTION
Modeling student learning within an intelligent tutoring
system can be a daunting task. In order to make predictions
about a student’s knowledge or their next problem
correctness, models must decipher noisy input and isolate
only those features that define the probability of knowledge
or learning. As such, designers of intelligent tutoring

systems have largely relied on Knowledge Tracing (KT), as
presented by Corbett & Anderson [2], to model the
probability of student learning at real time within popular
systems such as Cognitive Tutor [5]. Other methods, such
Performance Factors Analysis, seek to model learning when
considering overlapping knowledge components (i.e.,
skills) and individualized student metrics [11], offering an
alternative to KT in certain circumstances.

Despite the popularity of KT and PFA, the standard
models rely on binary input to establish predictions of
students’ knowledge state or performance, failing to
consider continuous metrics that would better individualize
the model across students or skills. Expansion in the field
educational data mining has since lead to a number of
alternative or supplementary learning models. For instance,
researchers have attempted to impart individualized prior
knowledge nodes for each student [8], to supplement KT
with a flexible metric for item difficulty [9], to ensemble
various methods of binning student performance (i.e.,
partial credit) with standard KT models [12], and to
consider the sequence of a student’s actions within the tutor
to help predict next problem correctness [3].

Without modifying KT or PFA directly, adding
parameters to student learning models can be a limited
approach. Tabling methods that quickly establish maximum
likelihood probabilities have previously been used by Wang
& Heffernan [12, 13] to test and optimize various potential
adaptations to KT. Following in this process, the present
study uses a tabling method to lay the groundwork for
future modifications to KT that will allow for predictions of
next problem correctness using the partial credit score and
difficulty estimate of the current item. While previous work
has shown the benefit of ensembling tabling methods with
KT, we hope to use the findings presented herein to modify
KT directly, as it has previously been suggested that
ensembling can be a rather sensitive approach [4].

Perhaps standard learning models rely on binary
correctness as measured by a student’s first response at
each skill opportunity (i.e., a sequence of correct and
incorrect responses based on a student’s first action within
each problem) due to the complexity of accurately and
universally defining an algorithm that validates partial
credit scores within intelligent tutoring systems. Within the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from permissions@acm.org.
L@S 2015, March 14–18, 2015, Vancouver, BC, Canada.
Copyright © 2015 ACM 978-1-4503-3411-2/15/03…$15.00
.http://dx.doi.org/10.1145/2724660.2724667

majority of current learning models, a student would be
penalized with a score of zero for taking advantage of the
tutoring that plays an integral role in these platforms. Yet
the primary goal of most intelligent tutoring systems is not
solely to assess student knowledge, but to simultaneously
promote student learning through adaptive feedback,
making binary correctness a stale concept. Students often
require multiple attempts to solve a problem or request
system feedback for guidance, thus assigning value to the
concept of partial credit. Attali and Powers [1] suggested
the benefits of considering partial credit when predicting
learning outcomes in adaptive environments, as evidenced
by the modification of standardized tests to allow partial
credit when predicting GRE scores.

Within ASSISTments, an adaptive mathematics tutor, a
naïve model of partial credit scoring was previously
established by Wang and Heffernan [12], termed the
“Assistance” Model. This method calculated maximum
likelihood probabilities for next problem correctness using
a twelve-parameter table built from binning students’ hint
usage and attempt count. In this manner, the authors used
system features to indirectly gauge a partial credit metric
that would help predict binary performance.

The present study provides methodological evidence
that student modeling can be enhanced through the use of
algorithmically derived partial credit scores and a binned
metric of problem difficulty. We first use tabling method (a
probabilistic approach employing maximum likelihood
estimations) that considers the partial credit score of the
current problem to predict both binary and partial next
problem correctness. We also establish a more complex
prediction table that considers both partial credit and
problem difficulty. Through this novel concept, we hope to
show that students can ultimately gain knowledge from a
problem even if they fail to earn full credit. Our findings
argue for the design of a modified KT model that is
sensitive to a continuous measure of partial credit rather
than binary input, and that isolates a known level of
problem difficulty for each question. We seek to answer the
following research questions:
1. Does an algorithmically determined partial credit score

outperform binary metrics when used to predict next
problem correctness?

2. Does a binned metric of current problem difficulty
(e.g., Low, Medium, or High difficulty) provide a valid
prediction of next problem correctness?

3. Can current problem difficulty supplement partial
credit score to outperform similar modeling
techniques?

DATASET
The dataset used for this analysis was compiled from
problem logs from the ASSISTments platform during the
2012-2013 school year. The original file included roughly
1.5 million rows of problem level data (i.e., each row
detailed all logged actions for one problem for one student).
For this study, we chose to analyze only the top ten most

densely populated knowledge components. Attributes of
these skills are further explained in Table 1. The dataset
examined here has been made publicly available at [7].

In order to properly calculate partial credit,
approximately 5,000 rows were removed due to a lack of
logged end time, meaning that these problems had never
been properly completed. Using the platform’s current
grading method, which is based on the students’ first
response, these logs carry binary correctness scores.
However, as the problem was ultimately considered
incomplete, partial credit could not be determined with
certainty and the logs were therefore excluded from
analysis. Further, the analysis presented herein reports only
on main problems. Scaffolding problems, a feedback style
within the ASSISTments platform typically used to break a
problem down into steps or to provide worked examples,
were excluded from the final dataset. The decision to work
with main problems was based in part on the justification
made by Pardos & Heffernan [9] when using a similar
dataset from the ASSISTments platform. As scaffolding
problems are guided, they offer a less accurate view of skill
knowledge and skew performance data within an
opportunity based analysis. An analysis of the remaining
dataset revealed that only 0.3% of first actions were
scaffold requests, further supporting the intuition that the
removal of scaffolding data was appropriate.

Due to the time constraints involved in running multiple
models with five fold cross-validation (explained further in
the Compared Models and Model Testing and Training
sections), we chose to restrict the dataset to a maximum of
15 opportunities per student per skill. This reduced the
dataset by 46,680 rows, primarily removing students who
were excessively struggling and those gaming the system;
the majority of students were unaffected by this refinement.

The resulting dataset consisted of 338,297 problem logs
representative of 15,253 unique student identification
numbers. On average, each student identifier linked to
approximately 3.3 skills. Further exploration of this dataset
revealed that it was comprised of 7,363 unique problems. A
total of 3,787 unique assignments were made by 417
teachers spanning 231 schools. The skill content ranged
from grades 6-8 as shown in Table 1. The majority of
logged problems (over 90%) were completed by students
who ‘mastered’ or finished the full assignment from which
the problem originated.

Three types of questions were represented in the
dataset. The majority of problems logged, 84.3%, were
‘mathematical expressions,’ a problem type that accepts
any answer that is mathematically equivalent to the correct
answer (i.e., answers of 1/2 and 0.5 are both accurate). In
contrast, 12.5% of problems logged were ‘fill-in,’ a
problem type that requires the student to input an exact
string matching the preset correct response (i.e., if 1/2 was
the preset answer, 0.5 would be incorrect). The remaining
3.2% of problems logged in the dataset were ‘multiple
choice,’ featuring two or more answers available for
selection.

Skill ID Definition Grade Level # Logs (Rows) % Resulting Dataset

277 Addition and Subtraction of Integers 7 44,731 13.2

311 Equation Solving with Two or Fewer Steps 7 44,005 13.0

280 Addition and Subtraction of Fractions 6 42,550 12.6

276 Multiplication and Division of Positive Decimals 6 37,033 10.9

47 Conversion of Fractions, Decimals, and Percentages 6 32,741 9.7

67 Multiplication of Fractions 6 31,716 9.4

61 Division of Fractions 6 28,809 8.5

278 Addition and Subtraction of Positive Decimals 6 27,301 8.1

310 Order of Operations 8 25,132 7.4

79 Proportions 7 24,279 7.2

Table 1. Skill details and distribution in resulting dataset

Further assessment of students’ responses provided insight
into their first actions, attempt counts, and hint usage. For
95.5% of logged problems, the student’s first action was to
make an answer attempt. Using ASSISTments’ current
scoring scheme, these attempts would receive binary scores
of either correct (1) or incorrect (0). Within this subgroup
of logged problems, 24% of the problems were marked as
incorrect while 76% were marked as correct. This suggests
that a partial credit metric could provide benefit for
approximately one quarter of attempted questions. Of the
remaining logged problems, 4.2% represented first action
hint requests, and 0.3% represented first action scaffolding
requests.

Given that partial credit scores for the present study are
algorithmically derived from an assessment of the student’s
attempt count and hint usage for each logged problem, these
variables were examined thoroughly. Analysis of attempt
counts across logged problems revealed a minimum of 0
and a maximum of 496, with a mean of 1.47 and a standard
deviation of 2.23. For logs that were marked as incorrect
based on first action, mean attempts rose to 2.70 with a
standard deviation of 3.99. Within the full dataset, students
made a total of 496,533 attempts.

Hint counts were also analyzed across logged problems
and compared to the total number of hints available for each
problem. Each problem had at least one hint, usually
serving as the bottom out hint (i.e., it provided the answer).
The average number of hints available per problem was
3.38, with a standard deviation of 0.88. The majority of
problems had three hints (38.9%) or four hints (33.4%),
with the maximum number of hints available in any
problem topping off at seven. Across all logged problems,
a total of 1,090,225 hints were available. Of the available

hints, students only used a total of 167,371, or roughly
15.4%. The average number of hints used was 0.49 with a
standard deviation of 1.20. For problem logs in which
students answered incorrectly on their first attempt, 55.8%
of available hints were utilized. Information particular to
the bottom out hint showed that within problems initially
answered incorrectly, only 14.5% of students proceeded to
the bottom out hint. Thus, when struggling, the majority of
students used the adaptive feedback inherent to the tutoring
system in an appropriate manner. This provides further
evidence for consideration of valid partial credit metrics.

Figure 1 provides a screenshot of a typical problem
within the ASSISTments tutor. Specifically, this problem is
a representation of the second most densely populated skill
in the 2012-2013 ASSISTments log file: “Equation Solving
with Two or Fewer Steps.” This skill is exemplified, rather
than highlighting the top skill, “Addition and Subtraction of
Integers,” as the problem provides a more robust example
of the system’s tutoring feedback. As shown in Figure 1,
the student is presented with the equation and asked to
solve for the missing variable. He or she can make an
attempt to solve the problem, or may ask for the first of
three hints. The hints increase in specificity, in an attempt
to guide the student without providing excess assistance.
The first hint shown in Figure 1 provides a worked example
of a similar problem solving for the missing variable, x. If
the student is unable to proceed using only the worked
example, he or she can request the second and third hints as
needed. The third hint in Figure 1 is the bottom out hint; it
provides the correct answer (“-24”) in an attempt to keep
the student from getting stuck in the assignment, as it is not
possible to skip problems and return at a later point as one
can with traditional bookwork.

Figure 1. An example problem featuring three hints for the

skill “Equation Solving with Two or Fewer Steps”

COMPARED MODELS
The following subsections explain the design and brief
history (when appropriate) of the five models compared in
the current study. All five models are primarily designed to
predict binary next problem correctness. For permitting
models, we present predictions of partial credit next
problem correctness using continuous probabilities for
additional consideration.

Partial Credit Predicting Next Problem Correctness
A naïve partial credit algorithm was derived by the
ASSISTments design team in hopes of providing the system

with partial credit scoring capabilities based on students’
attempt count and feedback usage. Scores were determined
subjectively based on teacher input and a conceptual
understanding of how students typically behave within the
tutoring platform. For this study, the algorithm was altered
slightly to consider multiple problem types and to account
for the students’ first action. For instance, if a student
asked for tutoring feedback without making an attempt to
solve the problem, we felt that a larger penalty was merited.

The resulting algorithm used to define partial credit
scores is depicted in Figure 2. Rather than establishing a
deduction method on a per hint or per attempt basis as
shown in previous work [12], the algorithm presented in
Figure 2 places each logged problem into one of five partial
credit bins (0, .03, 0.6, 0.7, 0.8, 1.0) by considering the
logged data pertaining to first response type (attempt = 0,
hint request = 1, scaffold request = 2), attempt count, and
hint count.

For example, if a student makes only one attempt and is
correct without requiring feedback, they earn full credit (a
score of 1). This is similar to the notion of binary
correctness on first response that ASSISTments currently
employs. However, in the current method, all other first
actions equate to an incorrect answer (i.e., requesting a hint
or scaffold, or making a first attempt that is incorrect would
both earn the student a score of 0).

As shown in Figure 2, after ruling out a ‘correct’
response, the partial credit algorithm considers whether the
student requested a scaffold before even making an attempt.
This behavior would suggest that either the student was not
actually trying to answer the problem, or that he or she was
struggling conceptually. Thus, rather than earning no credit,
the student is only discounted to a score of 0.6.

IF type = algebra OR type = fill_in
 IF attempt = 1 AND correct = 1 AND hint_count = 0
 THEN 1
 ELSIF first_action = 2
 THEN .6
 ELSIF attempt < 3 AND hint_count = 0
 THEN .8
 ELSIF (attempt <= 3 AND hint=0)
 OR (hint_count = 1 AND bottom_hint != 1)
 THEN .7
 ELSIF (attempt < 5 AND bottom_hint != 1)
 OR (hint_count > 1 AND bottom_hint != 1)
 THEN .3
 ELSE 0

IF type = multiple_choice
 IF correct = 1
 THEN 1
 ELSE 0

Figure 2. Algorithm used to determine Partial Credit score
based on first response, attempt count, and hint usage

Regardless of the student’s first action, if he or she uses
less than three attempts and does not request any hints, they
earn slightly more, with a score of 0.8. The next bin is
marked by students who have three or fewer attempts and
have not used a hint, or those who have asked for only one
hint and were not provided the answer (i.e., if a student’s
first action is to request a hint that is not the bottom out
hint, they would fall into this bin). These students earn a
score of 0.7. If the student can solve the problem within 5
attempts without seeing the bottom out hint, or if he or she
uses multiple hints without ultimately reaching the bottom
out hint, their partial credit score is 0.3. Finally, for
students who use five or more attempts, or for those that see
the answer, the problem is marked incorrect (a score of 0).

For multiple-choice questions the algorithm reverts to
binary correctness because this type of problem does not
usually provide feedback and guessing can be far more
prevalent and consequential. Thus, if a student fails to get
the correct answer on their first attempt, he or she receives a
score of 0. This method was employed to keep the problem
type from gaining an unfair advantage within the dataset.
For instance, using the algorithm applied to other problem
types, a student guessing through a multiple-choice problem
with only four responses would still receive a score of 0.3.

The full algorithm was run across the dataset and partial
credit scores were obtained for each logged problem. These
partial credit scores were then used to define a pivot table to
predict averages for both binary and partial next problem
correctness, using maximum likelihood estimation. Results
are presented in Table 2. For all parameter Tables, the
number of logged problems falling into respective bins is
depicted by sample size, n. The distribution of the data
suggests that slight improvements could be made to the
partial credit algorithm as few students fell into the 0.6 bin.
 Of all available ‘next problem’ data, only 14.7% of logs
had partial credit values between 0 and 1. Thus, 85.3% of
students would be insured by the platform’s current method
of binary correctness. This suggests that any significant
finding among the models considered in the present study

Partial Credit n Binary Partial

0 45,735 0.5062 0.5634

0.3 6,471 0.5902 0.7438

0.6 940 0.3660 0.7948

0.7 12,077 0.6921 0.8396

0.8 22,797 0.7085 0.8668

1 200,287 0.8050 0.8785

Table 2. Parameters for predicting Binary and Partial Next
Problem Correctness from current problem Partial Credit

would be quite intriguing, as only a small portion of the
sample is actually receiving the ‘partial credit’ treatment.

It should be noted that a potential problem inherent to
this tabling method (apparent in all tabled models in the
present study) is the inability to predict correctness on a
student’s first opportunity within a skill, as there is no
preceding problem data. This essentially causes the loss of
49,990 rows of data representing first problem predictions.
Thus, sample sizes in Tables 2, 3, and 4 total 288,307 logs
rather than 338,297.

Problem Difficulty Predicting Next Problem Correctness
A continuous metric of problem difficulty was calculated
by retrieving data from all problems logged in the platform
that were created before August 2012 (i.e., prior to the first
timestamp in the modeling dataset). For each unique
problem, all existing logs were averaged and a percentage
of correct responses were determined. The resulting value
offers an inverse metric of the problem’s difficulty level.
For instance, a problem on which students averaged 80% on
all previous opportunities would not be considered very
difficult. This metric was then binned into Low, Medium,
and High difficulties by defining Medium difficulty as
scores falling within +/- 0.5 standard deviations from the
mean. Considering the inverse nature of the metric, High
difficulty problems therefore had continuous values below
this cut off, and Low difficulty problems had continuous
values above this cutoff.

The bins for current problem difficulty were used in a
maximum likelihood probability table to predict averages
for both binary and partial scores for next problem
correctness. Resulting parameters are presented in Table 3.

Difficulty n Binary Partial

Low 91,712 0.7764 0.8465

Medium 107,901 0.7452 0.8297

High 88,694 0.6928 0.7895

Table 3. Parameters predicting Binary and Partial Next
Problem Correctness from current problem Difficulty

Partial Credit and Problem Difficulty Predicting Next
Problem Correctness
Based on the definitions of partial credit and problem
difficulty defined in the singular models above, our goal
was to create a novel model that used a tabling approach to
consider partial credit together with problem difficulty to
make predictions about next problem correctness. For each
logged problem, partial credit score and problem difficulty
were referenced to determine parameters for both binary
and partial credit next problem correctness. Resulting
probabilities are presented in Table 4.

 High Medium Low

Partial Credit n Binary Partial n Binary Partial n Binary Partial

0 8,357 0.5130 0.5621 16,307 0.5027 0.5622 21,071 0.5062 0.5650

0.3 1,107 0.6035 0.7401 2,332 0.6017 0.7548 3,032 0.5766 0.7367

0.6 29 0.5902 0.8508 236 0.3388 0.7897 675 0.3661 0.7943

0.7 2,829 0.6971 0.8288 4,888 0.6987 0.8463 4,360 0.6816 0.8391

0.8 5,094 0.7770 0.8753 8,342 0.7354 0.8712 9,361 0.6473 0.8581

1 74,296 0.8116 0.8787 75,796 0.8072 0.8841 50,195 0.7921 0.8697

Table 4. Parameters predicting Binary and Partial Next Problem Correctness from Partial Credit and Problem Difficulty

Knowledge Tracing
Knowledge Tracing (KT) is perhaps the most common
method for modeling student performance. The standard
KT model [2] has successfully proven itself as the basis for
modeling student knowledge within intelligent tutoring
systems [5] and thereby serves as a stable comparison for
new work.

As shown in Figure 3, the standard model of KT is a
Bayesian Network comprised of four learned parameters.
Two parameters represent student knowledge (prior
knowledge and learn rate) and two parameters represent
student performance (guess rate and slip rate). The
standard KT model is binary in that skills can only be in a
‘learned’ or ‘unlearned’ state, and questions can only be
‘correct’ or ‘incorrect.’ The model is updated with each
skill opportunity based on the student’s performance by
using the following equation as defined by Corbett &
Anderson [2]:

Figure 3. The standard Knowledge Tracing model with all

learned parameters and nodes explained

Forgetting does not factor into the standard KT model
when observing individual skills, as guess and slip
parameters are thought to account for incorrect answers
within the students’ sequence of opportunities. For further
information regarding the details of KT, refer to [2].

For this study, KT analysis was performed using the
Bayes Net Toolbox (BNT), a popular open-source code for
fitting directed graphical models within MATLAB [6].

Performance Factors Analysis
Performance Factors Analysis (PFA) was proposed as an
alternative to KT by Pavlik, Cen, and Koedinger [11]. The
method can model problems with multiple skills and has
been shown to accurately model and select practice within
adaptive systems. PFA was derived from Learning Factors
Analysis (LFA), an approach that considers a parameter for
student ability, a parameter for the skill’s difficulty, and a
learning rate for each skill. While PFA still considers skill
difficulty, β, the model improves upon LFA by considering
the frequency of both correct and incorrect answers in a
student’s response pattern, rather than simply assessing the
frequency of skill practice. Thus, PFA predictions are
updated with each skill opportunity based on a cumulative
history of the student’s successes (weighted by γ) and
failures (weighted by ρ), as depicted in the following
equation defined by Pavlik, Cen, and Koedinger [11]:

The log-likelihood (m) attained through this equation can
then be passed through an exponential function to find the
probability that the student will get the item correct. This
model suggests that learning is defined by more than just
skill practice, and that performance is strongly tied to skill
acquisition.

For this study, PFA was performed using unpublished
code within MATLAB. With properly formatted data, the
analysis can also be performed using logistic regression in
common statistical packages like IBM’s SPSS.

MODEL TRAINING AND TESTING
Five-fold cross validation was used to train and test each
model. In order to perform five-fold cross validation within
our tabled models, the dataset was divided using a modulo
operation on each student’s unique identification number.
Thus, for every student in the file, student id mod 5 was
called, returning a remainder falling into bins from 0 to 4,
thereby assigning students to folds. The distribution of the
resulting folds was roughly equivalent, as shown in Table 5.
With 15,253 unique student identification numbers in the
dataset, the largest fold had 3,082 student ids and the
smallest fold had 2,996 student ids, leaving a range of 86
and a standard deviation of 33.7.

Within each iteration of the cross-validation process, the
model was trained on approximately 80% of the data and
tested on the 20% that had been held out. Thus, when
trained on folds 1, 2, 3, and 4 (80% of the data) the model
would impart predictions on fold 0 (the held out 20%). In
this manner, for each tabling method described in Section 3,
table parameters were learned using four training folds and
predictions were made on the held out fold. The process
was repeated for all folds, thus resulting in five probability
tables for each prediction type (i.e., five ‘training’ tables for
partial credit predicting binary next problem correctness).
Using an extensive formula in Microsoft Excel, the
predicted averages were then applied back to each logged
problem respective of test fold. For predictions of binary
next problem correctness, rather than arbitrarily selecting a
cutoff point for classifying binary correctness (e.g., simply
using values greater than 0.5 to convey ‘1’), we instead
subtracted the prediction directly from the actual binary
result. Thus, when predicting next problem correctness
using partial credit alone, if the next problem is actually
correct using binary standard, the resulting residual is
calculated as: 1.0000 - 0.7085 = 0.2915. In this manner,
residuals were calculated for each log entry in each test fold
that contained data for next problem correctness.

A similar method of five fold cross-validation was
coded into the KT and PFA analyses within MATLAB.
Without modification, KT and PFA are not intended to
accurately predict partial credit next question correctness,
and as such we have saved these analyses for future work.

Fold Unique Students # Logs % Dataset

0 3074 67,715 20.0

1 3046 68,081 20.1

2 3082 68,739 20.3

3 3054 67,996 20.1

4 2996 65,766 19.4

Table 5. Distribution of data across five folds

To compare our tabled models with KT and PFA, slight
modifications were made to the standard modeling
procedures. Unlike tabling, these models carry the benefit
of being able to predict performance on a student’s first
opportunity within a skill. Based on a ‘prior knowledge’
parameter, KT is able to predict the student’s initial
knowledge state, K1, and therefore their performance on the
first question, Q1. Similarly, the equation for PFA defaults
a prediction of the skill’s difficulty parameter, β, as the
student’s initial state. These values essentially define a
baseline for the student’s knowledge, prior to any practice.
Thus, in order to provide a fair comparison to tabled
models, these first opportunity predictions were removed by
shifting predictions to align with our ‘next problem’
analysis. Within KT, all subsequent skill opportunities were
predicted using Expectation Maximization, a standard
method for parameter learning within KT. The model was
supplied the following initial parameters as ‘ground truths’
to begin the hill climbing process: prior knowledge = 0.30,
learn rate = 0.20, forget rate = 0.00, guess rate = 0.20, and
slip rate = 0.08. Within PFA, all subsequent skill
opportunities were predicted by updating the equation
presented in the previous section. These modifications
resulted in the same number of data points for each model,
providing grounds for fair comparison of the models.

Further, as noted briefly in the Dataset section, all
models were restricted to 15 predicted opportunities per
student per skill. This method was chosen largely to reduce
the computation time required to fit KT using five-fold
cross validation on such an extensive dataset. By capping
the opportunity count, analysis time was reduced to
approximately 20 hours. Other models were far less time
intensive, all taking under three hours to arrive at
predictions. Setting this restriction also served to reduce
potential skewing in student level analyses by removing
outliers with extensive opportunity counts.

RESULTS
All models were compared using the fit statistics of RMSE,
R2, AUC, and model accuracy. As the tabled models were
not restricted to binary input, fit statistics were also found
for consideration of modeling partial credit next problem
correctness.

For each model, these statistics were found at the
problem log level, the skill level, and the student level
where merited. These statistics were then averaged across
the level of analysis, resulting in the findings presented in
Table 6, Table 7, and Table 8, respectively. Thus, at the
problem log level, fit statistics were determined overall for
the 288,307 predictions, without consideration of student or
skill before being averaged across all problems. At the skill
level, ten sets of fit statistics were determined (one set for
each skill), which were then averaged across skills. At the
student level, 15,253 sets of fit statistics were determined
(one set for each student), which were then averaged across
students. The latter two procedures were intended to

 Binary NPC Partial NPC

Model RMSE R2 AUC Accuracy RMSE R2 AUC Accuracy
Partial Credit + Problem Difficulty 0.4241 0.0674 0.6365 0.7310 0.3326 0.1062 0.5395 0.7298
Partial Credit 0.4244 0.0660 0.6309 0.7309 0.3327 0.1060 0.5351 0.7298
Problem Difficulty 0.4379 0.0057 0.5464 0.7300 0.3511 0.0043 0.3953 0.7298
Knowledge Tracing 0.4240 0.0680 0.6621 0.7298 -- -- -- --
Performance Factors Analysis 0.4227 0.0738 0.6644 0.7485 -- -- -- --

Table 6. Problem Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC)

 Binary NPC Partial NPC
Model RMSE R2 AUC Accuracy RMSE R2 AUC Accuracy

Partial Credit + Problem Difficulty 0.4224 0.0670 0.6300 0.7414 0.3284 0.1032 0.5130 0.7399
Partial Credit 0.4229 0.0656 0.6290 0.7414 0.3284 0.1031 0.5103 0.7399
Problem Difficulty 0.4364 0.0046 0.5323 0.7402 0.3473 0.0037 0.3560 0.7399
Knowledge Tracing 0.4225 0.0602 0.6500 0.7466 -- -- -- --
Performance Factors Analysis 0.4212 0.0664 0.6506 0.7499 -- -- -- --

Table 7. Skill Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC)

 Binary NPC Partial NPC
Model RMSE* R2 AUC Accuracy RMSE* R2 AUC Accuracy

Partial Credit + Problem Difficulty 0.3864 0.1027 0.5431 0.7684 0.2702 0.1108 0.3593 0.7674
Partial Credit 0.3866 0.0994 0.5392 0.7683 0.2701 0.1057 0.3619 0.7674
Problem Difficulty 0.4064 0.0829 0.5219 0.7676 0.2941 0.0851 0.3145 0.7674
Knowledge Tracing 0.3897 0.1057 0.4425 0.7729 -- -- -- --
Performance Factors Analysis 0.3882 0.0970 0.5003 0.7754 -- -- -- --
*R2, AUC, and Accuracy are reported with less data than RMSE due to the nature of student level data.

 Table 8. Student Level Average RMSE, R2, AUC, and Accuracy for Models Predicting Next Problem Correctness (NPC)

properly weight skill and students based on their
contribution to the dataset, thereby improving measures of
model fit.

Student level statistics of RMSE were calculated based
on all predictions. However, it should be noted that
measures of R2, AUC, and model accuracy could not be
calculated for students with less than three skill
opportunities. This discrepancy should affect all models
equally, and thus we provide these measures for
comparison in Table 8 with the caveat that they should not
be directly compared to measures of student level RMSE.

DISCUSSION
The fit statistics for both the problem log and skill level
generalizations paint very similar pictures of the relative
success of our tabling method. The combined Partial Credit
and Problem Difficulty model performs about as well as KT
at both levels of analysis. At these levels, PFA appears to
be the ‘best’ model for predicting binary next problem

correctness, showing the lowest RMSE and highest AUC
and model accuracy. However, we feel that a simple tabling
method that can be performed with extreme efficiency yet
still meets the standards of KT is well worth discussion.

Our first research question, “Does an algorithmically
determined partial credit score outperform binary metrics
when used to predict next problem correctness?” was
answered with mixed results for binary predictions.
Considering problem log level analysis, while KT and PFA
attained fit statistics relative to those accepted in the field,
our tabling method for partial credit considered alone only
slightly underperformed these standards (RMSE = 0.4244,
R2 = 0.0660, AUC = 0.6309, Accuracy = 0.7309).
However, when considering student level analysis, our
partial credit tabling method outperformed both KT and
PFA in terms of RMSE and AUC. To confirm that these
findings were significantly different, we used a two-tailed
paired samples t-test for RMSE comparison at both the
student level and skill level. RMSEs obtained using our

tabling method with partial credit alone were significantly
different from those found using KT at the student level, t =
5.65, p < .001, but were not significantly different at the
skill level, t = -1.65, p = 0.133. Thus, it is difficult to tell if
this finding is truly significant.

Our second research question, “Does a binned metric of
current problem difficulty (e.g., Low, Medium, or High
difficulty) provide a valid prediction of next problem
correctness?” was answered by assessing the “Problem
Difficulty” model. When taken alone, problem difficulty is
not very helpful in predicting next problem correctness.
This was the worst performing model across all
granularities of analysis. A paired samples t-test was again
used to compare student level and skill level RMSEs to
those observed using the KT model. RMSEs obtained using
our tabling method for Problem Difficulty were
significantly worse than those found using KT at the
student level, t = -41.27, p < .001, as well as those found
using KT at the skill level, t = -9.93, p < .001. Of the tabled
models, this model was also the lowest performing model
when considering predictions of partial next credit
correctness, drastically underperforming models that
considered current problem partial credit score. Thus, we
argue that problem difficulty alone is a poor metric for
modeling student performance.

Our final research question, “Can current problem
difficulty supplement partial credit score to outperform
similar modeling techniques?” was answered by assessing
the fit statistics for the combined “Partial Credit + Problem
Difficulty” model. At the student level, this model
outperformed both KT and PFA on predictions of binary
next problem correctness as measured by RMSE (0.3864)
and AUC (0.5431). This finding was significant using a
two-tailed paired samples t-test comparing student level
RMSEs, t = 6.50, p < .001, but was not significant when
considering skill level RMSEs, t = -1.34, p = 0.214.
Despite the low performance of the Problem Difficulty
model, this combined model consistently outperformed
partial credit when modeled alone, suggesting possible
mediation effects. Using a paired t-test comparison, this
difference was significant at the student level, t = -4.55, p <
.001, but was not significantly reliable at the skill level, t =
-1.03, p = .310. As such, it is difficult to quantify the
potentially negative impact of considering problem
difficulty when using partial credit to model next problem
correctness.

Model fit indices for the prediction of partial credit
scores for next problem correctness are provided for further
consideration, but do not specifically link to our research
questions. Drastic improvements in model fit suggest that
intelligent tutoring systems should incorporate partial credit
scoring as it has the potential to enhance the precision of
student modeling. In the current study, these findings
cannot be compared to standard KT and PFA models that
utilize binary input and essentially predict binary
performance. Future research will incorporate modifying

these models to predict continuous partial credit metrics,
thus allowing for further comparison.

CONTRIBUTION
The results from the present study suggest that considering
partial credit for each skill opportunity can enhance the
accuracy of student modeling. While the concept of using a
tabling method to establish partial credit metrics that predict
binary correctness is not novel [12], tabling a model based
on algorithmically determined partial credit is, to the best of
our awareness, a unique approach. This method was shown
to perform about as well as KT when predicting binary next
problem correctness. We feel that this finding still provides
a significant contribution to the field, as KT is far more
computationally expensive. Our KT analysis took
approximately 20 hours to run, while all tabling methods
were conducted by hand in less than three hours. While this
is impressive in and of itself, the second author was then
able to implement the tabling method presented here within
the ASSISTments test database, arriving at a replication of
our predictions in less than two minutes. If automated in
such a manner, our Partial Credit + Problem Difficulty
model could predict next problem performance on par with
KT in approximately one 600th of the time. This increase in
efficiency could prove essential for intelligent tutoring
systems that currently incorporate KT models to adaptively
control student skill practice.

Further, the partial credit model was novel in its ability
to predict partial credit scores for next problem correctness,
thereby enhancing model fit even further. In future
research, we hope to modify the standard KT and PFA
models to allow for the prediction of continuous variables
for comparison. We also anticipate directly comparing our
partial credit model to the “Assistance” Model established
in previous research [12]. The “Assistance” Model cited a
clear cut, albeit subjective, method for the provision of
partial credit scores. As the tabling technique employed
made predictions on a continuous scale rather than by
binning partial credit as we have shown in the present
study, comparison was not presently possible without
ensembling our findings with standard KT measures [12].
However, as alternating ensembling techniques lead to
inconsistent results [4], we argue for direct modifications
within KT that will allow the model to learn partial credit
scores at each opportunity and to gauge a student’s
knowledge state on a continuum. A similar model was
previously suggested by Pardos & Heffernan [10], but to
our knowledge has never been implemented. Thus, the
present study lays the groundwork for future research in
modifying KT.

The assessment of models considering problem
difficulty also provides a contribution to the modeling
literature. It seems intuitive that problem difficulty should
influence a students’ ability to answer the current problem
correctly, and that it likely influences their knowledge state
and next problem correctness. The findings here suggest

that problem difficulty alone, when binned into generic
groups of Low, Medium, and High difficulty, does not
provide accurate models of next problem correctness.
However, problem difficulty appeared to enhance modeling
when coupled with partial credit in comparison to partial
credit modeled alone, although this difference was not
shown to be significant. Still, we believe that some
measure of problem difficulty is important to consider when
modeling student learning. Future research should
investigate using a continuous metric or designing an
alternative binning approach for this feature. Future work
should also consider devising an approach to remedy the
issue of being unable to predict a student’s first opportunity
within a skill when using tabled models. Possible solutions
include per student estimates of prior knowledge based on
performance on other skills within the tutor, or simply
implementing problem difficulty as a measure of likelihood
for accuracy.

Despite the impressive performance of our partial credit
model, we retain skepticism in regards to the subjective
nature of our partial credit algorithm. As multiple arbitrary
partial credit models have now been designed to assess log
data from the ASSISTments platform [12], we argue for the
design of a data driven algorithm that considers and
compares a myriad of logged features. Future work will
examine a grid search of possible hint and attempt penalties
to examine the sensitivity of the approach described herein.
The data files of intelligent tutoring system are rich with
information pertaining to students’ actions, including the
time required for first response, their sequence of actions
within each problem, and the specific misconceptions that
are driving incorrect responses. These features may provide
critical information for the scoring of partial credit. When
considering the approach used in the present study, using an
algorithm to establish partial credit scores prior to tabling
provides the leeway for tabled models to consider these
additional features. Future research could easily replicate
similar models, combining partial credit with novel features
for additional exploration of the observed effect.

ACKNOWLEDGMENTS
We acknowledge funding from NSF (grant #’s 1316736,
1252297, 1109483, 1031398, 0742503), ONR’s “STEM
Grand Challenges,” and IES (grant #’s R305A120125,
R305C100024). Thanks to S.O. & L.P.B.O.

REFERENCES
1. Attali, Y. & Powers, D. (2010). Immediate feedback and

opportunity to revise answers to open-end questions.
Educational and Psychological Measures, 70 (1), 22-35.

2. Corbett, A.T., Anderson, J.R. (1995). Knowledge
Tracing: Modeling the Acquisition of Procedural

Knowledge. User Modeling and User-Adapted
Interaction, 4: 253-278.

3. Duong, H.D., Zhu, L., Wang, Y., & Heffernan, N.T.
(2013). A Prediction Model Uses the Sequence of
Attempts and Hints to Better Predict Knowledge: Better
to Attempt the Problem First, Rather Than Ask for a
Hint. In S. D’Mello, R. Calvo, & A. Olney (Eds.)
Proceedings of the 6th International Conference on
Educational Data Mining. Memphis, TN. 316-317.

4. Gowda, S.M., Baker, R.S.J.D, Pardos, Z., & Heffernan,
N.T. (2011). The Sum is Greater than the Parts:
Ensembling Student Knowledge Models in
ASSISTments. Proceedings of the KDD 2011 Workshop
on KDD in Educational Data.

5. Koedinger, K.R. & Corbett, A.T. (2006). Cognitive
tutors: Technology bringing learning science to the
classroom. In K. Sawyer (Ed.), The Cambridge
handbook of the learning sciences (61-78). New York:
Cambridge University Press.

6. Murphy, K. (2001). The Bayes Net Toolbox for
MATLAB. Computing Science and Statistics, 33(2),
1024-1034.

7. Author1. (2014). L@S 2015 Submission: Dataset.
Retrieved 10/14/14, http://tiny.cc/LaS2015Submission

8. Pardos, Z.A. & Heffernan, N.T. (2010). Modeling
Individualization in a Bayesian Networks
Implementation of Knowledge Tracing. In Proceedings
of the 18th International Conference on User Modeling,
Adaptation and Personalization. 255-266.

9. Pardos, Z.A., & Heffernan, N.T. (2011). KT-IDEM:
Introducing Item Difficulty to the Knowledge Tracing
Model. In Joseph A. Konstan et al. (Eds.): UMAP 2011,
LNCS 6787, 243-254.

10. Pardos, Z.A. & Heffernan, N.T. (2012). Tutor Modeling
vs. Student Modeling. Proceedings of the Twenty-Fifth
International Florida Artificial Intelligence Research
Society Conference, 420-425.

11. Pavlik, P.I., Cen, H., Koedinger, K.R. (2009).
Performance Factors Analysis - A New Alternative to
Knowledge Tracing. In: Proceedings of the 14th
International Conference on Artificial Intelligence in
Education, Brighton, UK, 531-538.

12. Wang, Y. & Heffernan, N.T. (2011). The “Assistance”
Model: Leveraging How Many Hints and Attempts a
Student Needs. The 24th International FLAIRS
Conference.

13. Wang, Y. & Heffernan, N. (2013). Extending
Knowledge Tracing to Allow Partial Credit: Using
Continuous versus Binary Nodes. In K. Yacef et al.
(Eds.) AIED 2013, LNAI 7926, 181-188.

