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ABSTRACT 

Researchers invested in K-12 education struggle not just to 

enhance pedagogy, curriculum, and student engagement, but also 

to harness the power of technology in ways that will optimize 

learning. Online learning platforms offer a powerful environment 

for educational research at scale. The present work details the 

creation of an automated system designed to provide researchers 

with insights regarding data logged from randomized controlled 

experiments conducted within the ASSISTments TestBed. The 

Assessment of Learning Infrastructure (ALI) builds upon existing 

technologies to foster a symbiotic relationship beneficial to 

students, researchers, the platform and its content, and the 

learning analytics community. ALI is a sophisticated automated 

reporting system that provides an overview of sample 

distributions and basic analyses for researchers to consider when 

assessing their data. ALI’s benefits can also be felt at scale 

through analyses that crosscut multiple studies to drive iterative 

platform improvements while promoting personalized learning. 

Categories and Subject Descriptors 

K: Applications to Education. K.3: Computers and Education.  

I.2.2: Automatic Programming. G.3: Probability and Statistics. 

General Terms 

Measurement, Documentation, Experimentation, Standardization. 

Keywords 

Assessment of Learning Infrastructure, Automated Analysis, 

Randomized Controlled Experiments at Scale, The ASSISTments 

TestBed, Universal Data Reporting, Tools for Learning Analytics. 

1. INTRODUCTION 
An immense community of researchers, educators, and 

administrators seeks to enhance the effectiveness of educational 

practices. Those invested in K-12 education struggle not just to 

enhance pedagogy, curriculum, and student engagement, but also 

to harness the power of technology in ways that will optimize 

learning. Researchers often fall back on observational studies or 

turn to data mining large longitudinal datasets due to the 

difficulties inherent to conducting student-level randomized 

controlled experiments (RCEs) in authentic learning 

environments. Software for sharing educational data has driven 

tremendous progress in educational research and best practices. 

For instance, the Pittsburgh Science of Learning Center’s 

DataShop [8], funded by the National Science Foundation, 

provides an extensive database of educational datasets for post 

hoc data mining and analysis. However, the pace and power of 

educational research would increase drastically if researchers had 

easier access to environments in which they could design, 

implement, and analyze hypothesis driven experiments. The RCE 

remains the “gold standard” in determining causal relationships 

and was referred to when the U.S. Department of Education 

advocated for K-12 schools to apply basic findings from cognitive 

science to improve educational practices [16]. Without the 

assistance of scalable technologies, it has been difficult for 

researchers to answer the call to conduct RCEs within authentic 

academic settings [6] due to the high cost of establishing and 

maintaining sample populations, the complications inherent to 

randomization at the teacher-level (i.e., vast samples are required), 

and the often invasive curriculum restrictions necessary to 

establish sound controls.   

When designed with flexibility and collaboration in mind, online 

learning platforms offer a unique and scalable approach to 

educational research and data analysis. Users of online learning 

platforms (i.e., students and teachers) create hundreds of 

thousands of data points each day, with databases of rich learner 

information growing exponentially as platforms gain popularity 

and validity as powerful learning aids. Beyond achievement 

measures, these systems provide opportunities to collect 

information including (but not limited to) behavior and affect [2, 

17], learning interventions within content or feedback [14, 15], 

and interactions between skill domains that help guide curriculum 

development [1]. Through flexibility in content design, 

manipulation, and delivery, researchers are able to tap into the 

elements that drive effective learning within authentic K-12 

classroom environments. When content can be manipulated to 

include parallel assignments, fashioned as conditions within 

RCEs, researchers are able to determine best practices and work 

toward personalized learning. Further, designing these 

environments with the open, collaborative, and perhaps even 

competitive design of RCEs in mind can strengthen internal 

validity and promote open source data reporting for review and 

replication of findings upon publication [11]. By allowing data 

scientists, educational researchers, and K-12 educators to work 

collaboratively within online learning platforms, all are 

empowered to dynamically evaluate and improve the 

effectiveness of the platform and its content while fostering 

growth in learner analytics. 
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1.1 Research in the ASSISTments TestBed 
ASSISTments is a unique online learning platform that was 

designed with educational research as one of its primary goals [5]. 

The platform is used for both classwork and homework by over 

50,000 users around the world, and provides students with 

immediate feedback and rich tutorial strategies and teachers with 

powerful assessment through a variety of reports that pinpoint 

where students are struggling and empower data driven teaching 

[5]. Recent funding from the NSF has allowed ASSISTments to 

promote educational research at scale through the development of 

the ASSISTments TestBed (www.ASSISTmentsTestBed.org). 

External researchers can use the TestBed to embed studies within 

ASSISTments content and non-invasively tap into our user 

population at virtually no cost and in a fraction of the time 

previously required to run experiments within K-12 environments.  

The process of conducting an RCE within the TestBed typically 

involves researchers modifying preexisting certified content to 

include treatment interventions and student-level random 

assignment. The latter feature makes the TestBed a unique and 

robust tool for conducting research; rather than delivering the 

same treatment condition to all students within a particular class, 

students in the same class will be randomly assigned to different 

conditions while participating in the same assignment (i.e., 

content, feedback, or delivery may vary from student to student). 

The library of certified ASSISTments content consists primarily 

of middle and high school mathematics skills, with content 

organized and tagged by Common Core State Standard [10]. 

However, this library has grown to include content in physics, 

chemistry, and electronics, and researchers are able to develop 

their own content for experimentation in other domains.  

Figure 1 depicts a simple study design implemented within the 

ASSISTments TestBed.  Inclusion of a student in this type of 

study is dependent on her ability to access video content (note that 

many schools block video servers like YouTube). When the 

student begins her assignment, she must first pass a “Video 

Check,” or a standard problem that serves as password protection 

to study participation.  If the  student can  access video,  she enters 
 

 

Figure 1: A simple research design that can be built using the 

ASSISTments TestBed to compare learning interventions. 

the ‘password’ provided in the short clip as her answer, and her 

correct response serves as the “Then” in an “If-Then” routing 

structure. If the student enters anything other than the password as 

a response, she is provided a default assignment without video 

content and is not considered a study participant. While this 

process attempts to control for technical issues, it does not 

demand the fidelity of study participants (i.e., we cannot currently 

track viewing statistics for embedded videos). Upon being routed 

into the study depicted in Figure 1, students are randomly 

assigned into one of two conditions using a “Choose Condition” 

routing structure. Note that although two conditions are presented 

here for simplicity, the system is able to compare any number of 

conditions. The platforms approach to random assignment will be 

discussed further in Section 3.1.2. 

In the present example, there are three possible paths that a 

student may follow as she progresses through her assignment (the 

specific trace of these paths will become important in the 

automated reporting and analysis of student performance 

presented in Section 3). For each student, regardless of path, 

ASSISTments logs substantial data detailing performance as the 

student progresses through the assignment. This data includes 

binary measures of problem accuracy (i.e., a correct or incorrect 

first response), the students first action (i.e., an attempt vs. 

requesting tutoring), the number of attempts per problem, the 

number of feedback interactions per problem (i.e., hints requested 

or scaffolds seen), whether or not the student saw the bottom out 

hint (i.e., the correct answer, provided to keep the student from 

getting stuck within the assignment), and start and end times for 

each problem. For researchers with a fine-toothed comb, 

ASSISTments can also provide logged information at the action 

level, detailing each step taken within a problem. ASSISTments is 

also able to track user information that is ultimately helpful to 

researchers, including data on the students performance in the 

system prior to their inclusion in a study, student characteristics 

(i.e., gender, age), and additional variables at the class and school 

levels. Through use of the TestBed, this information is 

consolidated, anonymized, and provided to researchers through 

unified reports (depicted in Section 3.1.1) to enhance the ease 

with which RCEs are conducted at scale.    

1.2 Utility of Automated Data-Preprocessing 
With students accessing experiments naturally in authentic 

learning environments, sample populations increase as a function 

of time. For instance, within three months of deploying a study 

within ASSISTments, a researcher may accrue 740 participants. 

This process does not require direct interaction between 

researcher and teachers, although some researchers choose to 

work directly with local classrooms to establish stronger controls. 

As external researchers are unfamiliar with the ASSISTments 

database and the inner workings of the platform, universal data 

reporting and preprocessing techniques were designed to ease the 

hurdle of interpreting system output. Without preprocessing, a 

researcher analyzing data from the study depicted in Figure 1 

would need to use raw data to decipher whether students should 

be included in analyses, what condition each student experienced, 

details pertaining to each students experience within that 

condition (i.e., how many problems were completed, their content, 

and all associated performance data), and how each student 

performed at posttest. While such rich information is helpful in 

analyzing a study, providing researchers with a surplus of data 

necessitates larger and more complex datasets that must still meet 

ease of use requirements. Although different researchers focus on 

different information (as it applies to their particular hypotheses), 

an infrastructure for data preprocessing, restructuring, and 
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reporting was necessary to bring ASSISTments to the next level 

as a shared scientific instrument for educational research. 

In the following sections we discuss the creation of an automated 

reporting and analysis system built to provide researchers with 

data logged from RCEs conducted within the ASSISTments 

TestBed. The Assessment of Learning Infrastructure (ALI) builds 

upon existing technology to foster a symbiotic relationship 

beneficial to students, researchers, the platform and its content, 

and the science of learning. Evolving from a universal data 

logging and retrieval tool, ALI is quickly becoming a 

sophisticated system for automated analysis, offering researchers 

an overview of their sample population and conducting a selection 

of analyses for consideration when assessing data. The benefits of 

ALI can also be felt at scale, with analyses spanning content to 

drive platform improvements with the long-term goal of 

personalizing learning. 

2. ALI IN THEORY 
The Assessment of Learning Infrastructure is an automated 

research assistant that, while not meant to replace the researcher, 

is meant to lighten the load of working with large data files output 

from RCEs conducted within the ASSISTments TestBed. ALI 

alerts the researcher to new data, presents that data in a 

meaningful way, tentatively examines effects observed between 

conditions, and flags potential threats to validity. On a weekly 

basis, as well as on demand, ALI consults all logged information 

pertaining to a study and conducts preliminary analyses on student 

participation and performance (described further in Section 3). 

The potential benefits of automated reporting and analysis are 

broad; in the next four sections we briefly discuss how ALI’s 

success will affect ASSISTments and its users, researchers and the 

Testbed, and the greater learning analytics community. 

2.1 Benefits to ASSISTments Users 
ALI’s work at scale will help to guide the development of 

stronger learning interventions and, eventually, drive personalized 

learning within ASSISTments. Research conducted within the 

TestBed is unique in that while researchers are able to alter 

content and deliver versatile interventions as previously 

exemplified in Figure 1, such manipulations are not invasive. 

Study participation and student performance within an assignment 

is passively logged. A student may notice that some of her 

assignments include video feedback or have extra survey 

questions while others do not, but she is not informed that she is 

participating in an RCE. A primary goal driving the TestBed’s 

ability to implement RCEs within ASSISTments is the provision 

of normal instructional practice and interventions that do not 

compromise learning.  

ALI is also beneficial to teachers, as the infrastructure is able to 

separate rich study information from daily assessment data. 

Teachers are responsible for assigning content within 

ASSISTments to their students. Although it seems as though 

research designs created in the TestBed would complicate daily 

assessment, class and student reports have been designed such that 

teachers are provided pertinent information in a clean and concise 

manner. This low profile approach to conducting research 

maintains a highly participatory subject pool. Teachers wishing to 

conduct action research within their classes may do so by working 

with the TestBed as well, although most prefer to use day-to-day 

reports to guide their teaching practices rather than large 

automated data files. 

2.2 Benefits to the Researcher 
For those conducting RCEs within the ASSISTments TestBed, 

ALI plays the role of research assistant. The infrastructure 

intelligently communicates with researchers when new data is 

available for analysis and provides an overview of the sample 

distribution across conditions to signify the power of current 

analyses. Although researchers will undoubtedly run their own in 

depth analyses, standard high-level analyses can be automated to 

save time and reduce monotony. For example, ALI’s ability to 

trace a student’s path through an assignment allows the 

infrastructure to infer what condition the student experienced. 

This allows ALI to test for differential attrition rates across 

conditions and notify the researcher of apparent selection biases.  

This simple analysis can serve as a beneficial warning against 

analyzing posttest results due to potential threats to internal 

validity. Combined with the data preprocessing and sophisticated 

reporting that ALI’s analytics are built upon, these notifications 

are often enough to save researchers from hours of wasted labor.  

2.3 Benefits to the Platform 
When considered at scale, ALI’s capabilities for data reporting 

and analysis contribute to the enhancement of the ASSISTments 

platform by supporting practical improvements to content and 

feedback without interrupting student learning. As researchers 

collaborate and compete to design interventions within the 

ASSISTments TestBed, it will grow increasingly possible to 

evaluate interventions at scale, both across skills and 

longitudinally within students. Ideally, the best version of content 

and delivery observed (to date) for a particular skill would be 

delivered to students as the control condition in new RCEs. 

Through this approach, each study offers the potential for iterative 

improvement as experiments are launched and re-launched, 

capturing key features of design-based educational research 

methodology [3]. Such improvements additionally benefit users 

through the predicted outcome of enhanced learning gains and 

researchers through the rapid succession and enhanced validity of 

positive findings.  

ALI’s ability to analyze at scale will also help the ASSISTments 

team to quickly isolate and remove ineffective interventions. It is 

our goal that in the near future, ALI will conduct robust analyses 

across multiple studies while considering student, class, and 

school level characteristics. Roughly speaking, ALI will allow 

ASSISTments to personalize learning by better understanding 

why certain educational practices and interventions work for 

certain students but not for others.  

2.4 Benefits for Learning Analytics 
How can ALI and the promotion of infrastructures like ALI within 

other learning platforms benefit the learning analytics 

community? At its very core, ALI answers the general call of 

learning analytics, in that the infrastructure “emphasizes 

measurement and data collection as activities that institutions need 

to undertake and understand, and focuses on the analysis and 

reporting of the data” [20]. A strong focus on providing universal 

measures of learning garnered from authentic learning 

environments will strengthen the validity of findings from a broad 

range of interventions that seek to isolate best practices in 

education. 

Further, much attention in the broader scientific and psychological 

research communities has recently befallen the general inability to 

replicate research findings [7, 11]. The same is likely true for 

educational research, with little emphasis placed on data 

accountability. Perhaps the best outlet for promoting open data, 
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the Pittsburgh Science of Learning Center’s Data Shop [8] takes a 

number of steps in the right direction with regard to shared 

datasets that promote open, replicable, and sound science. ALI 

builds upon the PSLC’s model of open data reporting by 

establishing stable, timestamped links to every data analysis 

report ever provided to a researcher throughout the duration of 

their work within ASSISTments. Researchers are asked to cite the 

report from which they draw data for final analyses and 

publication (explained further in Section 3.1.5).  References to 

these reports will also drastically increase the availability of 

preprocessed and anonymized educational datasets for researchers 

wishing to mine big data without designing specific interventions. 

In some ways, ALI is also an extension of industry track research 

focused on learning analytics; companies like Google and 

Microsoft increasingly implement large-scale experimentation in 

online learning environments to consider reporting metrics and 

analytic methods that meet practical goals rooted in scientifically 

sound evidence [9]. If infrastructures like ALI were incorporated 

into other learning platforms, similar large-scale experimentation 

could easily be promoted for its importance to learning analytics. 

3. ALI IN PRACTICE 
The Assessment of Learning Infrastructure has grown 

considerably over the past year. ALI began as a robust SQL query 

to the ASSISTments database to retrieve unified information 

across multiple studies and to present it to researchers in a single 

format. Ease of use requirements, communication considerations, 

and feedback from external researchers has helped ALI to grow 

beyond data preprocessing and reporting into a tool for learning 

analytics at scale. The following sections discuss how ALI has 

evolved and provides examples of the infrastructure’s current 

capabilities in reporting, analyzing, and communicating data from 

RCEs conducted within the ASSISTments TestBed.  

3.1 ALI’s Current Capabilities 

3.1.1 Data Reporting at Scale 
When a researcher submits a study to the ASSISTments TestBed, 

details about the study and the researcher’s contact information 

are entered into ALI’s study repository. Although researchers can 

request immediate data analysis reports on demand, ALI defaults 

to a weekly inspection of each study in the database and makes a 

decision regarding whether or not to process a data analysis report 

for the researcher. This decision is based on measured increases in 

sample size. Due to common curricula structures, certain skills are 

only used at specific times of year and thus, an assignment with 

an embedded study may be highly popular during the Fall term 

but not the Spring term. When ALI inspects the study’s logged 

data, at least three new participants since the last ALI 

communication are required to trigger a new data report. 

As teachers using ASSISTments are able to make copies of 

assignments and alter their content, ALI is also able to detect 

when teachers have assigned a copy of a study. ALI is 

sophisticated enough to recognize when a copy is identical to the 

original study and include data associated with the copy in each 

report. If a copy of the study has been altered (i.e., problems were 

removed or sections were changed), ALI does not report data 

associated with the copy. This ensures that researchers receive all 

data associated with their experiment without corrupt data.    

Once ALI has determined that new data is available, several 

robust SQL queries are run on the ASSISTments database. Three 

major queries are used to a) retrieve student data detailing student, 

class, and school level characteristics for each student recorded 

prior to random assignment (see Table 1; field definitions are 

beyond the scope of this paper but are available in our glossary at 

[13] for additional reference), b) retrieve problem level data (see 

Table 3), and c) detect the problem set structure (i.e., the paths 

depicted in Figure 1) for each student with logged data. These 

three queries provide ALI with the information necessary to 

establish reports and conduct automated analysis. By working 

closely with researchers throughout the development of ALI, we 

have designed four different universal data representations in an 

attempt to meet dynamic research needs. Subsets of data 

exemplifying each type of report are provided below. Table 2 

shows fields typical to the Action Level file. This file offers the 

finest granularity of data logged by ASSISTments as a student 

works through an assignment. Each row provides information 

pertaining to a single step within a problem (i.e., when the 

problem is initiated, or when the student asks for a hint).  A subset 

of the Problem Level file is depicted in Table 3. This file provides 

the same data as that found in the Action Level file, but the 

granularity has increased. Each row provides information 

pertaining to a single problem, with actions collapsed across 

columns. Student Level files, as depicted in Table 4, offer the 

coarsest granularity of data reporting. In this type of file, each row 

provides information pertaining to the entire assignment for a 

single student. For each feature or action, problem information is 

presented across columns in the order in which the student 

experienced the assignment, with the number of columns for each 

feature extrapolated to the maximum number of problems 

experienced by any student in the file. An alternative version of 

Student Level data is also provided in which each student 

assignment is represented by a series of rows, each representing a 

feature for problems displayed across columns (akin to a pivot 

table of the file described in Table 4). Full examples of each data 

file are available at [13] for further consideration. Links to each 

data file are gathered and presented to the researcher in a single, 

organized communication, depicted in Figure 2 and discussed 

further in Section 3.1.5.  

When preprocessing is complete and all data files have been 

compiled, ALI sends analytic commands to Rserve, an extension 

to the R programming language that allows for other applications 

to call R functions via a TCP/IP connection [19]. The 

ASSISTments team created a client side API to interact with 

Rserve, allowing ALI to send requests to R.  Because Rserve is 

not multithreaded, several instances of Rserve run on separate 

ports on the ALI server. The server is designed to recycle existing 

connections, with a connection pool equal to the maximum 

number of threads used by ALI. This allows several data
 

Table 1: A theorized subset of student historical data. Each row contains student, teacher, and school characteristics linked to a 

particular student, using information sourced prior to random assignment 

Student Class ID Grade School ID 
Guessed 

Gender 

Birth 

Year 

Prior HW 

Completion % 

Prior Class HW 

Completion % 

Normalized HW 

Mastery Speed 

A 1007475 8 5597 Male 2001 0.83 0.88 0.33 

B 1180278 8 5597 Male 2001 0.76 0.88 0.03 

C 1180278 8 5597 Male 2001 0.76 0.88 0.03 

D 1322778 7 2342 Female 2002 0.95 0.97 -0.39 
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Table 2: A theorized subset of an action level data file. Each row represents a single action within a single problem as experienced 

by a student. This is the finest granularity of data reported by ALI 

Student Problem ID Sub-Problem ID Order Action Type Timestamp Answer Correctness 

A PRAUVJS 806533 1 Start 08/26/15 15:25:26 -- -- 

A PRAUVJS 806533 2 Hint 08/26/15 15:25:52 -- -- 

A PRAUVJS 806533 3 Answer 08/26/15 15:26:40 18.2 TRUE 

A PRAUVJS 806533 4 End 08/26/15 15:26:42 -- -- 

A PRAVKJX 833840 1 Start 08/26/15 15:26:43 -- -- 

  

Table 3: A theorized subset of a problem level data file. Each row contains all the information linked to a single problem as 

experienced by a student. This is a popular form of data for student modeling and analytics 

Student Assignment ID Problem ID Correct Answer  Hints Attempts Start Time End Time 

A 1007475 PRAUVJS 1 18.2 0 1 08/26/15 15:25:26 08/26/15 15:26:42 

A 1007475 PRAVKJX 1 14.3 0 1 08/26/15 15:26:43 08/26/15 15:27:45 

A 1007475 PRAVKHT 1 6.4 0 1 08/26/15 15:27:50 08/26/15 15:28:47 

B 1180278 PRAUVJX 0 22.8 2 3 08/26/15 17:14:22 08/26/15 17:15:42 

B 1180278 PAVKGZ 0 7.2 0 2 08/26/15 17:15:43 08/26/15 17:17:31 

  

Table 4: A theorized subset of a student level data file. Each row contains all information linked to a single student’s experience of 

the problem set. Assignment information is presented across columns in the order in which the student experienced problems 

Student Assignment ID Late Mastered Correct Q1 Correct Q2 Correct Q3 Answer Q1 Answer Q2 Answer Q3 

A 1007475 1 1 1 1 1 18.2 14.3 6.4 

B 1180278 0 0 0 0 1 17 14.1 6.4 

C 1180278 1 0 0 1 -- 24.6 14.3 -- 

D 1322778 0 1 1 1 1 18.2 14.3 6.4 
 

analysis reports to occur simultaneously, all using different 

Rserve connections. This approach lowers the turnaround time 

when a researcher actively requests data. It also keeps weekly 

reporting as efficient as possible, as all datasets in ALI’s study 

repository are assessed weekly for potential reporting. 

3.1.2 Smart Structures 
In order to determine what to analyze, ALI must first process the 

structure of a study and trace each student’s path through the 

assignment (as previously discussed in relation to Figure 1). As 

ALI parses the assignment’s structure, the infrastructure is able to 

make intelligent decisions upon meeting certain section types 

within the design. This is accomplished by recursively generating 

the assignment’s reported structure into tree form. Within the 

Problem Level data file presented in Table 3, each problem is 

labeled with a path, similar to that used when traversing a set of 

folders within an operating system. ALI steps through each 

problem path for each student to establish an intuitive structure of 

the study and to cluster students by condition. 

RCEs within the ASSISTments TestBed are designed by taking 

advantage of a variety of section types offered by the platform. 

The “If-Then” routing discussed in Section 1.2 was an example of 

a section type. When ALI observes an If-Then structure that 

issues a routing standard like a “Video Check,” the infrastructure 

intelligently conducts its analyses on students assigned to the 

study and disregards students routed to alternative content.  

Similarly, studies often employ parallel experimental and control 

conditions delivered using a section type referred to as a “Choose 

Condition.” This section type is used to drive random assignment. 

The “Choose Condition” depicted in Figure 1 included two 

parallel conditions: an assignment with video content and a 

control assignment with traditional text content. Currently, in 

order for ALI to recognize an assignment as a research study, a 

“Choose Condition” must be present when mapping the 

assignment’s structure. ALI then assesses logged data within each 

condition and considers any section immediately following these 

conditions as a subsequent posttest (see Figure 1). Using this 

information, ALI is able to aggregate statistics and perform a 

selection of simple analyses across problems and students.  

It is important to note that research designs within the 

ASSISTments TestBed can grow far more complex than the 

simple structure presented herein. When assignments include 

nested section types and multiple “If-Then” routing standards, 

ALI currently has difficulty interpreting condition and isolating 

posttest content. In its current form, ALI is only meant to assist 

researchers with the analysis of common design patterns. Future 

work, discussed in Section 5, will expand ALI’s ability to 

intelligently parse studies using tagging rules set forth by the 

researcher. 

3.1.3 Selection Bias 
After establishing a study’s structure and sample distribution, ALI 

is able to assess assignment completion rates across conditions 

and alert researchers to potential threats to internal validity due to 

selection bias. ALI records the observed number of students in 

each condition that began the assignment, and considers logged 

assignment end times to consider the proportion of students that 

ultimately completed the assignment. The observed distribution is 

then compared to the expected distribution of proportional 

attrition in a normal sample. A Chi-squared analysis is used to 

determine if the observed distribution of attrition significantly 

differs from the expected distribution. ALI then flags conditions 

that have a reliably different attrition rate and alerts the researcher 

of a potential threat to internal validity. Without considering 

differential attrition across conditions, an analysis of posttest 

performance may inaccurately suggest the significant effect of a 

particular condition that was actually driven by the 

disproportionate loss of weaker students. This simple analysis, 

presented to researchers as shown in Figure 3, may help even the 

most seasoned experts to accurately assess their sample. It is 

important to note that while ALI provides this warning, the 

infrastructure still releases all data to the researcher and never 

prohibits the researcher from further analysis. The goal of ALI’s 

selection bias assessment is not to impede or prevent analysis, but 

rather to advocate sound analytic practices. 
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Raw Data Files 
 

Raw data files contain the logged information for each student that has participated in your study. We provide this data in a variety of formats, as explained 
below, to assist in your analytic efforts. We use Google Docs to share these files with you. If you would like to process these files manually, we recommend 

downloading the CSV file of your choice and saving the file as an Excel spreadsheet or workbook to retain formatting and formulas. If you will be passing 

the file directly to a statistical package, downloading the CSV to a convenient location should suffice. 
 

For a field glossary and tutorials on how to read each type of file, visit our Data Glossary. 
 

Historical Data 

Covariate File - A collection of useful covariates for the students participating in your study. This file includes student level variables (i.e., gender), class 

level variables, (i.e., homework completion rates), and school level variables (i.e., urbanicity). Click here for a tutorial on how to link this file to your 
experimental data. 
 

Experimental Data 

1. Action Level - One row per action per student; the finest granularity. Students participating in your study have performed 13,655 actions (e.g., 
beginning problems, attempting to answer problems, asking for tutoring, and eventually completing problems). 

2. Problem Level - One row per problem per student. Students participating in your study have completed 2,280 problems. The flow through a single 

problem incorporates many actions, resulting in a coarser data file (fewer rows). 
3. Student Level - One row per student; the coarsest granularity. Columns are laid out in opportunity order to depict the student’s progression through the 

problem set. Problem level information is expanded to one column per problem per field (column heavy). 

4. Student Level + Problem Level - One row per field per student. Columns are laid out in opportunity order to depict the student’s progression through 
the problem set. An alternative view of student level information (row heavy). 
 

Figure 2: A thoroughly developed universal reporting of logged data from students participating in RCEs. Each file presented here 

is discussed further, including depictions of file subsets, in Section 3.1.1. 

 
 

The Assessment of Learning Infrastructure (ALI) 
 

Completion Rates 

Students that have started your study: 329 
Students that have completed your study: 251 
  

Bias Assessment 
Before analyzing learning outcomes, we suggest first assessing potential bias introduced by your experimental conditions (i.e., examine differential attrition). 

The table below reports the number of students that have completed your study, split out by experimental condition. 
 

Condition Started (n) Completed (n) Completed (%) 

Group A – Experiment 1 109 80 73.39 

Group B – Experiment 2  87 60 68.97 

Group C – Control  99 89 89.90 

Total 295 229 77.63 
  

NOTE: A significant difference was found between observed and expected completion rates across conditions, χ2 (2, N = 295) = 13.467, p < .01. This means 

that a selection effect may have occurred. Hypothesis testing with regard to posttest scores has not been conducted out of an abundance of caution. 
 

Mean and Standard Deviation of Posttest Score by Condition 

To examine learning outcomes at posttest, an analysis of means was conducted across conditions. The table below reports mean posttest score and standard 

deviation for each condition. This information was sourced from our automated posttest sub-report. 
 

 Completed (n) Posttest Score* 

Group A – Experiment 1 80 34.40 (4.34) 

Group B – Experiment 2 60 32.95 (3.89) 

Group C – Control  89 44.11 (3.72) 

Total 229 37.15 (3.98) 

* Presented as Mean (SD). 
 

Figure 3: Current ALI analytic reporting.  Available analyses include a Chi-squared test comparing the observed and expected 

sample distributions, simple hypothesis testing, and an analysis of means on posttest performance between conditions. Note that 

these analyses are currently driven by the structure of the assignment as parsed by ALI from Problem Level data.  Future work 

includes allowing researchers to tag their study with items of interest to automate analysis with greater sophistication.  

    

3.1.4 Simple Hypothesis Testing 
After conducting a selection bias assessment, ALI progresses to a 

set of simple hypothesis tests with regard to posttest performance. 

If ALI detects a posttest section when parsing an assignment’s 

structure, the infrastructure compares performance across 

conditions by referring to the previously aggregated group 

distributions. ALI approaches posttest analysis much like a 

researcher would: if only two conditions are detected within the 

study, ALI conducts a t-test, while if more than two conditions are 

detected, ALI conducts an Analysis of Variance (ANOVA). ALI 

currently has the API to support simple univariate and 

multivariate analyses including ANOVA, ANCOVA, MANOVA, 

and MANCOVA. ALI stores all input parameters for a given 

statistical test in a single object. The parameters are extracted 

from this object and transformed into the appropriate R function 

calls through the Rserve API communication. Results are 

accumulated and presented to the researcher alongside an analysis 
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of means, as shown in Figure 3, allowing the researcher to 

observe the direction of the reported effect. Note that in the 

present example, ANOVA results are not presented to the 

researcher out of an abundance of caution due to ALI’s detection 

of a potential selection bias. Our goal in restricting this 

information is strictly in the promotion of sound scientific inquiry. 

It should also be noted that covariates are not presently considered 

in ALI’s hypothesis testing. Future work will control for student, 

class, and school level characteristics sourced from the historical 

student data file (see Table 1) by using ANCOVA or MANCOVA 

approaches in an attempt to explain additional variance in learning 

outcomes. 

3.1.5 Data Storage and Researcher Output 
When ALI’s automated analysis is complete, ALI stores all data 

files and analytic output on Google Drive in archival quality. This 

data cannot be altered but can be downloaded by anyone. For 

active studies, copyright protection will be placed on new data 

analysis reports for one year from the study’s initial run date.  

This means that researchers will have a full calendar year to 

publish on their findings before their data becomes freely 

available to the public.  

ALI communicates to researchers via email, providing a link to a 

stable URL for a Google Doc housing that week’s data analysis 

report. The Doc contains links to all raw data files, as shown in 

Figure 2, and provides automated analysis as depicted in Figure 3. 

The creation of this Google Doc is automated, based on an HTML 

template file that uses custom tagging conventions to insert 

variables with dynamic text or data. Using this method, the same 

report can be generated multiple times or across multiple 

assignments with changes to only the pertinent information. This 

allows for customized reporting based on the results of ALI’s 

analysis. The Google Doc report also provides researchers with 

links to additional resources including a glossary explaining 

features of the data and video tutorials on how to understand each 

file type (available at [13]).  

When researchers are ready to publish findings, a condition of 

working with the ASSISTments TestBed requires that they 

include a reference in their work to the stable record from which 

they sourced the data files used for final analyses. This approach 

allows reviewers and secondary researchers to gain access to raw 

study data, thereby encouraging replication and open science 

[11]. In addition to the raw data, secondary researchers will also 

be able to use these references to access ALI’s analytic report, 

including all automated analyses. 

4. ANALYSIS AT SCALE 
Although ALI’s analytic structure is still somewhat rudimentary, 

considered at scale, comparisons of findings from multiple studies 

can offer substantial insights for the ASSISTments platform and 

in more general terms, for the learning analytics community. By 

simultaneously examining attrition outcomes across studies it 

becomes possible to make claims about the quality of 

interventions that crosscut multiple skills. As ALI’s analytical 

capabilities increase, analysis at scale will grow even more 

powerful.  

As a proof of concept of the potential benefits of automated 

analysis at scale, ALI was run across a special dataset including 

25 studies that are currently running within ASSISTments. This 

file was created for another sophisticated approach to modeling 

student performance across multiple studies [18], but serves as a 

perfect example of ALI’s capabilities at scale. In the spirit of open 

data, this file is available for reference at [12]. The studies in this 

file were selected from a group of 126 studies currently running 

within the ASSISTments platform based on the following criteria: 

 Studies selected contained at least 50 students within each 
condition that completed the assignment. 

 Studies selected were designed within Skill Builders, a 

mastery learning based assignment that considers predefined 

thresholds for student completion (i.e. by default, to 

complete the assignment the student must solve three 
consecutive problems accurately).   

As most of the studies in this file were built prior to the 

implementation of automated path-logging (which drives ALI’s 

ability to read in the structure of the study and infer a condition 

for each student), condition was manually traced and logged for 

each student based on his or her observed problem sequence. A 

number of these studies were also built before the availability of 

If-Then routing and subsequent checks for internal validity (i.e., 

the “Video Check” explained in connection to Figure 1). As such, 

it is difficult to tell if students experienced technical difficulties 

during the course of a condition. To analyze this dataset using all 

of the capabilities that ALI has with recently designed studies, we 

manually notated flags regarding the observed fidelity of 

conditions. This flagging also included whether students ‘tested 

out’ of the condition experience (i.e., if a student was assigned to 

a condition in which the treatment was presented through 

feedback but answered the first 3 consecutive problems 

accurately, they did not ultimately experience the treatment). As 

only three of the studies in this file contained valid posttest 

information, we only present ALI’s selection bias assessment for 

consideration at scale (see Table 5).  

The 25 studies presented in Table 5 span a variety of 

investigations including: assessing the effect of various types of 

video tutoring (i.e., pencasts, teacher recorded instruction, online 

resources) compared to traditional text-based tutoring across 

multiple designs (i.e., using scaffolding, using hints, as an 

intervention to wheel-spinning [2], or provided based on student 

choice), investigating the manipulation of content (i.e., 

interspersing learning with humor through comics in content or 

feedback, asking students to gauge their confidence in solving 

problem content, and altering student mindset (as inspired by [4]), 

and challenging cognitive principles (i.e., mental representations, 

and alterations in the consistency of math equations). Assignment 

names, as presented in Table 5, are tagged with the grade level 

and domain of the skill content as defined by Common Core State 

Standards [10]. Despite differences in domain and 

experimentation, ALI is able to provide a sense of condition 

quality across studies at scale. 

The results of the simple Chi-squared analyses in Table 5 may not 

seem significant at first, but are actually quite insightful at scale. 

In studies with two conditions, experiment vs. control (20 

comparable sets of the 25 shown in Table 5), the control groups 

showed less attrition in 15, while the experimental groups showed 

less attrition in only five. On its own, this comparison suggests 

that experimental conditions correlate with higher attrition rates. 

However, this attrition is only significantly different than that of a 

normally distributed sample in five studies  (p < .05), with 

experimental conditions showing significantly more attrition than 

expected in four studies, and control conditions showing 

significantly more attrition than expected in only a single study. 

At scale, these analyses can help researchers and developers 

determine which interventions are effectively retaining students, 
 

285



 

Table 5: ALI’s Bias Assessment at Scale - Observed Distributions and Chi-Squared Analyses Across 25 Problem Sets 

Problem Set by Condition Started (n) Completed (n) Completed (%) df χ2    p 

Multiplying Mixed Numbers 5.NF.B.4a 775 466 60.13 1 5.30 0.021* 
      Control 403 258 64.02    

      Experiment 372 208 55.91    

Understanding Vocabulary About Circles G-C.A.2 695 674 96.98 1 4.87 0.027* 
      Control 330 325 98.48    

      Experiment 365 349 95.62    

Equivalent Expression 6.EE.B.4 273 240 87.91 1 0.39 0.532 
      Control 138 123 89.13    
      Experiment 135 117 86.67    

Writing Inequalities from Situations 6.EE.B8 627 539 85.96 1 2.21 0.138 
      Control 338 297 87.87    

      Experiment 289 242 83.74    

Dividing Mixed Numbers 6.NS.A.1 1864 1285 68.94 1 0.99 0.321 
      Control 943 660 69.99    

      Experiment 921 625 67.86    

Finding Expected Value SS.MD.B.5 457 337 73.74 1 0.06 0.802 
      Control 224 164 73.21    

      Experiment 233 173 74.25    

Conditional Probability SS-CP.A.3 515 366 71.07 1 0.70 0.401 
      Control 281 204 72.60    

      Experiment 234 162 69.23    

Permutations and Combinations SS-CP.B.2 540 456 84.44 1 0.00 0.958 
      Control 265 224 84.53    
      Experiment 275 232 84.36    

Basic Logarithm Manipulation F-BF.B.5 136 121 88.97 1 0.21 0.645 
      Control 62 56 90.32    

      Experiment 74 65 87.84    

Properties of Exponents 8.EE.A.1 545 435 79.82 1 0.24 0.626 
      Control 264 213 80.68    

      Experiment 281 222 79.00    

Intermediate Logarithm Manipulation F-BF.B.5 205 169 82.44 1 8.44 0.004** 
      Control 102 92 90.20    

      Experiment 103 77 74.76    

Solving abct = d LE.A.4a 147 122 82.99 1 0.01 0.914 
      Control 72 60 83.33    

      Experiment 75 62 82.67    

Finding Inverse Functions F-BF.B.4 301 143 47.51 1 3.32 0.068† 
      Control 145 61 42.07    
      Experiment 156 82 52.56    

Composition of Functions F-BF.A.1c 219 173 79.00 1 0.86 0.354 
      Control 118 96 81.36    

      Experiment 101 77 76.24    

Sequences F-BF.A.2 382 241 63.09 1 0.20 0.658 
      Control 198 127 64.14    

      Experiment 184 114 61.96    

Comparing Values - Multiplying by Fractions 5.NF.B.5a 129 121 93.80 1 1.59 0.208 
      Control 69 63 91.30    

      Experiment 60 58 96.67    

Converting Radians to Degrees F-TF.A.1 245 226 92.24 1 0.23 0.631 
      Control 129 120 93.02    

      Experiment 116 106 91.38    

Trigonometric Ratios G-SRT.C.8 307 266 86.64 1 0.91 0.341 
      Control 141 125 88.65    
      Experiment 166 141 84.94    

Pythagorean Theorem – Finding the Hypotenuse 8.G.B.7 447 349 78.08 1 6.40 0.011* 
     Control 237 174 73.42    
     Experiment 210 175 83.33    

Solving 1-Step Equations 7.EE.B.4a 928 818 88.15 1 0.01 0.934 
     Control 459 405 88.24    
     Experiment 469 413 88.06    

Prime Factorization 6.NS.B.4 1238 1058 85.46 2 0.97 0.616 
     Control  430 369 85.81    

     Experiment 1 399 345 86.47    

     Experiment 2 409 344 84.11    

Order of Operations (No Exponents) 7.NS.A.3 1231 1172 95.21 2 4.50 0.105 
     Group A - Consistent/Neutral 597 574 96.15    

     Group B - Inconsistent 300 287 95.67    

     Group C - Mixed 334 311 93.11    

Note. †p < .10, *p < .05, **p < .01. df = Degrees of Freedom. 
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Table 5: ALI’s Bias Assessment at Scale - Continued 

Problem Set by Condition Started (n) Completed (n) Completed (%) df χ2    p 

Multiplying Simple Fractions 5.NF.B.4a 598 559 93.48 3 1.54 0.673 
     Group A – No Choice + Text 142 131 92.25    

     Group B – Choice + Text 222 211 95.05    

     Group C – Choice + Video 76 71 93.42    
     Group D – No Choice + Video 158 146 92.41    

Rotations 8.G.A.3 306 186 60.78 1 0.82 0.365 
     Experiment 1 145 92 63.45    

     Experiment 2 161 94 58.39    

Reflections 8.G.A.3 239 171 71.55 1 0.17 0.680 
     Experiment 1 125 88 70.40    

     Experiment 2 114 83 72.81    

Note. †p < .10, *p < .05, **p < .01. df = Degrees of Freedom. 

 

and more importantly, critical design issues that drive students 

away. As many of these 25 studies were designed prior to the 

implementation of internal validity checks (i.e., assessing a 

student’s technical abilities with video content), we believe that 

the analyses in Table 5 suggest higher attrition in experimental 

conditions because certain students were assigned to content that 

they had difficulty accessing. This finding would not likely hold 

true when considering studies run more recently, suggesting the 

importance of the recent implementation of If-Then routing. 

Future work with ALI at scale will help to confirm this 

hypothesis. Usability is a concern within any online learning 

system, and providing students with access to default assignments 

when they cannot access enriched content is a safe practice.  

It is also important to consider the percentage of students 

excluded from analysis prior to the assessments presented in 

Table 5. Within all sets, an average of 22.85% of students did not 

actually experience condition and were removed from the sample 

prior to analysis. Students that fail to experience interventions 

implemented within feedback (due to mastery or performance at 

ceiling) provide valuable information to researchers regarding the 

raw (inflated) sample size required to achieve statistical power. 

Certain elements of a study’s design, including the content 

domain (i.e., some topics are easier than others and students 

require less feedback on average), and the type of feedback 

provided (i.e., on demand feedback requires a larger raw 

population than feedback provided automatically upon the 

student’s incorrect response), can have a significant impact on the 

raw sample size required to attain enough treated students to 

reliably detect effects. RCEs that consider interventions 

implemented strictly within problem content have fewer issues 

with regard to raw sample sizes as all students experience the 

intervention regardless of performance, easing potential issues 

surrounding intent-to-treat analyses. 

Finally, analyzing the selection effects inherent to multiple 

assignments simultaneously allows ASSISTments to evolve more 

rapidly, providing benefits to users, researchers, and the learning 

analytics community. As the experimental conditions in Table 5 

exhibited only 1.5% greater attrition on average than control 

conditions, it is possible that the benefits of these experimental 

interventions may still outweigh the increase in attrition. 

Additional data mining would be necessary to determine a 

standard at which the potential for emphasized learning gains 

within an experimental condition no longer outweighed the 

potential for increased attrition. However, regularly conducting 

this type of broad scale analysis across assignments could quickly 

isolate studies with conditions considered extremely detrimental, 

and the condition could be discontinued in order to limit the 

intervention’s negative impact on students. ALI’s automated 

analysis makes the process of intervention validation dramatically 

more efficient and robust. From these findings, and from future, 

more powerful iterations of ALI’s at-scale capabilities, 

ASSISTments will be able to deliver rapid iterations of 

interventions with the goal of optimizing students’ interactions 

with the system through enhanced usability and strengthened 

content and delivery methods.  

5. LIMITATIONS & FUTURE WORK 
As ALI is constantly evolving and gaining new capabilities, the 

version of the infrastructure presented here carries a number of 

limitations. As made apparent by the complex methods applied to 

consider ALI’s effects at scale, the infrastructure is currently only 

able to recognize studies with logged path information. The 

implementation of path logging occurred in March 2015, and ALI 

is only able to reliably analyze studies that were created after this 

implementation. This limitation is compounded by ALI’s 

inferences of the study design and posttest items. As studies 

within the ASSISTments TestBed can be designed using a number 

of complex, nested structures, ALI’s current decisions about study 

designs are not exceptionally intelligent. A serious limitation of 

the work presented herein is that the infrastructure is currently 

only able to reliably recognize and analyze study designs with 

simple structures (i.e., “If-Then” routing, a single “Choose 

Condition,” and a clear cut posttest section that directly follows an 

intervention).  

While these limitations influence ALI’s significance for the 

learning analytics community, they can easily be resolved through 

future work. One of our current focuses is the implementation of a 

tagging system that will allow researchers to identify pertinent 

sections of a study prior to its distribution. Using unified naming 

structures for the design of assignment sections within the 

building process (e.g., [experiment], [control], [posttest]), 

researchers will essentially be able to tell ALI exactly how to 

approach analysis. This will allow ALI to provide customized 

analysis and, potentially, refined data files that are preprocessed 

according to the researcher’s distinct needs. Tagging will also 

allow for analyses that collapse similar treatment groups (i.e., 

experimental group 1 and experimental group 2 could both be 

tagged with [experiment] to denote that ALI should collapse these 

conditions), that isolate unconventional posttest problems (i.e., 

problems falling within a section that does not immediately follow 

a “Choose Condition”), and that assess growth models of student 

performance (i.e., by measuring pre- to posttest gains, or through 

more complex hierarchical models). 

Future work for the ALI team also includes defining a powerful 

list of student, class, and school level variables for use as 

covariates in statistical analyses. Variables that have already been 
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established include measures of each student’s prior performance 

within ASSISTments, measures of their completion rate on 

classwork and homework assignments, and normalized values that 

compare the student’s performance and attrition against that of 

their class. As such, future iterations of ALI’s at-scale capabilities 

will also be able to control for particular student characteristics in 

order to assess the true variance established by experimental 

interventions. Additional content is also being built into 

ASSISTments and made available in the TestBed to collect self-

report measures from students for use as possible covariates. Rich 

covariates will provide ALI with the ability to examine the effects 

of experimental interventions across groups while controlling for 

substantial variance, making automated analyses far more robust. 

6. CONTRIBUTION 
The learning analytics community will benefit greatly from the 

Assessment of Learning Infrastructure (ALI) and the promotion of 

similar infrastructures for other online learning platforms. 

Currently, very few learning technologies serve as scientific tools 

for researchers to conduct and communicate the findings of sound 

educational research at scale. By allowing researchers to conduct 

research within authentic learning environments through 

classwork and homework completed within online learning 

platforms, it is possible to collect rich log files that can be 

reported in universal formats and analyzed using automated 

processes. As a community, a strong focus on providing universal 

measures and analyses from these platforms will strengthen the 

validity of findings from a broad range of interventions that seek 

to isolate best practices in education. The broad dissemination of 

vast anonymized educational datasets will also propel the field 

toward more transparent, replicable, and reputable scientific 

practice, improving learning analytics for all.  
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