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This study
1
 provides statistical analysis that corroborates a prediction implied by Les 

Steffe’s model: the strength of children’s conception of number as a composite unit 

predicts their ability to reason multiplicatively.  In individual clinical interviews, 33 

fourth graders (age ~10) correctly solved a 1-digit addition word problem (8+7). 

Students spontaneously used one of three strategies: counting-on, doubling, or 

break-apart-make-ten (BAMT).  Our statistical analysis revealed that students’ 

spontaneous use of BAMT largely predicted their ability to reason multiplicatively, 

counting-on predicted poor ability, and doubling fell in between.  We discuss 

implications of these findings for research and practice. 

INTRODUCTION 

We examine how a central element of Steffe’s (1992) model of children’s 

mathematical thinking—children’s conception of number as a composite unit—might 

help predict their extant ability to engage in multiplicative reasoning (MR).  Like 

Ulrich (2015, 2016), our study addresses Lamon’s (2007) call for research linking 

students’ additive and multiplicative structures.  It sheds light on a novel aspect of this 

link—the vital role students’ conception of number may play in developing more 

advanced concepts, such as fraction and ratio (Hackenberg, 2013). 

We argue that a child’s spontaneous use of an additive strategy (counting-on, doubling, 

BAMT) to solve a 1-digit addition word problem indicates the strength of the child’s 

conception of number.  Our focus is not on students’ potential to learn to reason 

multiplicatively.  Rather, we aim to predict students’ current ability to use 

multiplicative reasoning based on the additive strategy they spontaneously use.  We 

follow Kilpatrick’s (2001) assertion of the need for statistical corroboration of the 

predictive power bestowed by conceptually sound models.  Drawing on constructivist 

theory, researchers have used qualitative methods to develop conceptual models of 

students’ additive and multiplicative reasoning.  However, little work has been done in 

the field to test and corroborate such qualitative models.  Our study follows Norton and 

Wilkins’ (2009) lead, by providing new quantitative analysis to corroborate a central 

element of Steffe’s (1992) model of children’s mathematical thinking. 

 



Tzur et al. 

_______________________________________________________________________________________________________________________

4-290 PME 41 – 2017 

CONCEPTUAL FRAMEWORK 

The core of the constructivist framework for this study is the depiction of children’s 

conception of number as an abstract, symbolized composite unit (Steffe, 1992).  This 

conception allows a child to operate on a numerical symbol as a single “thing” and to 

decompose it into sub-parts. When reasoning additively, a child can mentally 

coordinate the same type of unit (e.g., 8 grapes + 7 grapes = 15 grapes). In contrast, 

when reasoning multiplicatively, a child can simultaneously coordinate different levels 

of units: items in each composite unit (1s), number of composite units, and a total 

number of 1s (Ulrich, 2015).  For example, consider the problem: “Sarah wants to put 8 

grapes into each of 7 baskets. How many grapes does she need?”  A child reasoning 

multiplicatively can distribute items of one composite unit (grapes per basket) over 

another composite unit (baskets) to find the total number of items (1s) in a collection of 

composite units (total of grapes).  Such a coordination requires conceiving of number 

as composite unit (Steffe, 1992; Ulrich, 2016).   

We sharply distinguish a child’s solution to a problem from conceptions that underlie 

her solution (Tzur et al., 2013; Ulrich, 2016).  A student may correctly solve a 1-digit 

addition problem (e.g., 8+7) by spontaneously using additive strategies such as: 

counting-all (1, 2, …, 14, 15), counting on (8; 9, …, 14, 15), doubling (7+7=14; 

14+1=15), BAMT (8+2=10; 10+5=15), or fact retrieval.  If we focus on the correct 

solution, any of these strategies would suffice.  Instead, we contrast them based on the 

strength of a child’s conception of number that we infer to underlie each strategy. 

Steffe (1992) used a criterion of number as a composite unit to claim counting-all does 

not indicate a conception of number.  We also claim that counting-on indicates a weak 

conception; doubling an intermediate conception; and BAMT a strong conception.  In 

each of those latter three strategies, a child could conceive of one addend as a 

composite unit.  Yet, a child using counting-on does not decompose numbers into 

sub-parts other than 1s.  Rather, she accrues, one after another, units of 1 that constitute 

the second addend.  In doubling, the child could decompose one addend to create easy 

fact retrieval (8 is 7+1), then add two composite units in their entirety (7+7=14), and 

finally ‘call-back’ the decomposed 1 (14+1=15).  In BAMT the child could both 

decompose one addend into units larger than 1 (7 is 2+5) and integrate them into 

another unit (8+2=10) as a means to add two composite units in their entirety 

(10+5=15).  A child’s use of decomposition indicates that she can operate on a number 

as a unit in and of itself, without constantly reconstituting it from 1s.  Because a child 

using BAMT uses decomposition into and integration of sub-parts that are themselves 

composite units, we argue that spontaneous use of BAMT indicates a stronger 

conception of number than does doubling.  

METHODS 

This study was part of a larger project focusing on promoting and studying upper 

elementary teachers’ shift toward a student-adaptive pedagogy (AdPed), and how such 

a shift impacts students’ learning and outcomes.  To this end, we developed and 
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validated a written measure for assessing students’ multiplicative reasoning (MR) 

(Hodkowski  et al., 2016).  The measure contains five word problems: one screener 

(1-digit addition) and four problems through which we intended to measure students’ 

multiplicative reasoning. Our team includes language experts who helped design word 

problems appropriate for students learning English as an additional language.  

In Problem #1 (screener), we intended for students to spontaneously use a strategy to 

add two 1-digit numbers (8+7).  In Problem #2, we intended for students to iterate a 

composite unit (e.g., a tower of 5 cubes) to determine if it could constitute a larger 

composite unit (e.g., a tower of 24 cubes).  In Problem #3 (MR), we intended for 

students to distribute items of one composite unit (3 cubes per tower) over another (6 

towers) to find the total number of items in a collection of composite units (total 

cubes).  In Problem #4, we intended for students to keep track of composite units (4 

teams of 5 players each).  We asked them to determine the correctness of a hypothetical 

student’s  (Joy) statement that, through ‘skip-counting’ by 5, she found there are 35 

players in all.  In Problem #5 (MR), given a total number of items (28 cookies), we 

intended for students to iterate one composite unit (4 cookies per bag) to determine the 

total number of composite units (bags) needed.  In each of the MR word problems 

(#2-5), we included sub-questions that required students to fill in blanks with key, 

given information. For example, in Problem #4, students had to fill a given in the 

blank: “In each team there are ___ players.”  We included these sub-questions, in part, 

to assess students’ comprehension of problem statements. 

Our initial analysis of the interviews revealed a novel correlation that extended beyond 

our initial design: the spontaneous additive strategy students used to solve a 1-digit 

addition word problem (8+7) seemed linked with their score on the MR measure.  

Thus, we designed a follow-up, quantitative study (reported here) to collect and 

analyze data to examine this novel correlation. 

Setting and Participants. 

Participants were 4
th

 graders (age ~10) at an elementary school in a large urban school 

district in the western USA. A total of 43 students—roughly 50% of all 4
th

 graders in 

that school—completed the MR measure during an individual, clinical interview 

conducted by the first author.  We excluded ten students from our analysis: 3 who used 

counting-all, 4 with no consent, and 3 who incorrectly responded to the sub-questions 

assessing students’ comprehension of the word problems. The study sample thus 

consisted of 33 students (15 girls), all mainstreamed for math instruction. Most (85%) 

participants identified as non-white, including 17 (52%) Latino/a and 11 (33%) 

African-American students.  Of the 33 participants, 45% were designated as English 

Language Learners, and three had Individual Educational Programs (IEPs). 

We have established three important commonalities for this sample. First, all 33 

students correctly solved Problem #1, using either counting-on, doubling, or BAMT.  

Second, 32 of them correctly responded to the sub-questions (fill givens in the blanks) 

intended to assess their comprehension of the problem statements.  Third, the actions 
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and time lapse between each student’s reading and answering Problem #1 (from 4 to 30 

seconds) indicated none solved 8+7 through fact retrieval.  

Data Collection and Analysis. 

The first author administered the MR measure to individual students, during clinical 

interviews lasting about 30 minutes. Each problem was first read out loud by the 

student or the interviewer. The student then solved the problem on her or his own, 

without assistance. After a student finished solving a problem, the interviewer asked 

follow up questions to gather further evidence of students’ thinking. As each student 

solved Problem #1, to increase the likelihood of accurate inference of the additive 

strategy each student used, during the interview, he made notes of the child’s actions 

and utterances—and the inferred additive strategy. 

Students used two forms of doubling: (a) 7+7=14; 14+1=15 and (b) 8+8=16; 16-1=15.  

No statistically significant difference could be found between those two sub-groups. 

We thus combined them into a single category (doubling). We classified three ordinal 

levels of the independent variable: 1=incipient/weak (counting-on), 

2=developing/intermediate (doubling), and 3=developed/strong (BAMT) conception 

of composite unit. We then conducted three tests. First, we used ANOVA to test 

whether means in solutions to MR problems (Problems #2-5) were significantly 

different for those three groups. Next, we used Kendall’s Tau-b, a test of correlation 

that does not assume normal distribution or equal interval scaling.  Finally, we used a 

t-test to compare between every pair of groups, supposing (based on the ANOVA) the 

comparison between counting-on and BAMT is the imperative one. 

RESULTS 

In this section, we present data analysis to substantiate our claim that the strength of a 

child’s concept of number as a composite unit, inferred from her or his spontaneously 

used additive strategy (independent variable), can help predict the child’s ability to 

reason multiplicatively (dependent variable).  We begin with statistical analysis of all 

participants (N=33), followed by between-group differences.  

Multiplicative Reasoning – All Participants. 

In Table 1 we provide percentages of students who correctly solved each MR problem.  

We observe two important results.  First, despite all 33 students solving 100% of 

Problem #1 correctly, they collectively solved less than 40% of each MR problem 

correctly.  We interpret students’ success on Problem #1 to indicate their ability to use 

additive reasoning and their difficulty with Problems #2-5 (MR) to indicate their lack 

of multiplicative reasoning.  This contrast between additive and multiplicative 

reasoning lends support to researchers’ theoretical predictions of a conceptual leap 

involved in shifting from additive to multiplicative reasoning (Hackenberg, 2013; 

Ulrich, 2015). 
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MR Problem 2 3 4 5 

Percentage of correct solutions 33% 18% 36% 39% 

Table 1: Percentages of students who correctly solved each MR problem. 

Second, students’ success rate was lowest (18%) in solving Problem #3. A 

paired-samples t-test comparing all students’ solutions to Problem #3 and to the three 

other multiplicative problems shows non-significant difference with Problem #2, a 

statistically significant difference with Problem #4 (t=2.25, df=32, p=.032), and nearly 

statistically significant with Problem #5 (t=1.88, df=32, p=.07).  

Between-Group Differences in Multiplicative Reasoning (MR). 

In Table 2 we show percentages of students who correctly solved each MR problem, 

disaggregating the data by the spontaneous additive strategy students used to solve 

Problem #1.  We found statistically significant differences among students when 

disaggregating by their spontaneously used additive strategy.  The percentages of 

students who solved all MR problems correctly were highest for BAMT (56%), 

midway for doubling (34%), and lowest for counting-on (17%).  ANOVA shows these 

differences are statistically significant (F=8.25, p=.001).  Further t-tests on success 

rates for the four MR problems showed nearly statistically significant differences 

between counting-on and doubling (t=2.04, df=22, p=.053) and highly significant 

between counting-on and BAMT (t=4.29, df=23, p<.0005), but not between doubling 

and BAMT, possibly due to the smaller n of these two groups. 

MR Problem 2 3 4 5 Across all 4 MR Problems 

Counting on 13% 6% 19% 31% 17% 

Doubling 50% 13% 38% 38% 34% 

BAMT 56% 44% 67% 56% 56% 

Table 2: Percentages disaggregated by students’ spontaneous additive strategy. 

A Kendall’s Tau-b (KTb) test of correlation further demonstrates the linkage between 

students’ additive strategy and the success rate on problems involving multiplicative 

reasoning (KTb= 0.5, p=.001).  Data in Table 3 further highlight this: a child’s 

spontaneous use of counting-on predicts a very low success rate on MR problems. Of 

students using counting-on, 94% correctly solved at most one problem. In contrast, 

No. of MR problems Solved Correctly 0 1 2 3 4 (All) 

Counting-on (N=16) 

Doubling (N=8) 

BAMT (N=9) 

37.5% 

12.5% 

11.1% 

56.3% 

62.5% 

11.1% 

6.2% 

- 

33.3% 

- 

25.0% 

33.3% 

- 

- 

11.1% 

Table 3: Percentages of students who correctly solved 0, 1, 2, 3, or 4 MR problems. 
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a child’s spontaneous use of BAMT predicts a much higher success rate on MR 

problems: 78% of students spontaneously using BAMT correctly solved at least two 

MR problems (33.3%, 33.3%, 11.1%) 

To examine the impact of spontaneous additive strategy on student success rate for 

each MR problem separately, we conducted ANOVA for between-group differences.  

Table 4 presents these results.  Group contribution to this variance, calculated using 

S-N-K post-hoc statistics and t-tests (Table 5), showed statistically significant 

differences between counting-on and doubling (Problem #2), and between counting-on 

and BAMT (Problems #2, #3, and #4). 

Problem No. 2 3 4 5 

ANOVA F=3.42 (.046) F=3.25 (.053) F=3.146 (.006) - 

Table 4: ANOVA of between-group differences for each MR problem. 

 

Problem No. 2 3 4 5 

Count-on vs. Doubling 

Count-on vs. BAMT 

t=2.1 (.048) 

t=2.49 (.021) 

- 

t=2.47 (.021) 

- 

t=2.61 (.015) 

- 

- 

Table 5: Independent samples t-test values of between group-pairs differences on each 

problem (equal variance not assumed; p-values in parentheses). 

Results presented in Tables 4 and 5 indicate two main points that, combined, support 

our claim that the strength of a child’s conception of number as composite unit holds 

predictive power for her current ability to reason multiplicatively.  First, we focus on 

responses to Problem #4, on which students who used counting-on were most 

successful. To solve Problem #4 correctly, students needed to (a) determine that Joy’s 

response is wrong (in 4 teams of 5 players each, there are not 35 players), (b) select an 

appropriate reason for Joy’s mistake, and (c) figure out the correct number of teams 

that Joy counted (35 players would make 7 teams of 5 players each).  Only three 

students (19%) who used counting-on could solve this problem correctly, seemingly 

by their ability to skip-count by 5s to arrive at 20.  The other thirteen (81%) students 

were unsuccessful.  Among those thirteen, ten students (63%) incorrectly selected “35” 

as the number of teams that Joy counted.  We interpret the students’ error to provide 

empirical evidence to support Ulrich’s (2015) claim that such students rely on 

operating on 1s—a reliance that may often be masked by their successful performance 

when iterating familiar numbers, such as 5. 

Students’ performance on Problems #2, #3, #4 provides further support of Steffe’s 

(1992) model.  In each of these problems, a child would have to carry out the 

simultaneous, coordinated monitoring of the accrual of both 1s and composite units. 

Among the 16 students who spontaneously used counting-on to solve Problem #1, only 

two (13%) could solve Problem #2, only one (6%) could solve Problem #3, and only 

three (19%) could solve Problem #4.  These data corroborate the prediction that 
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students with weak composite unit—solving addition tasks by adding 1s—are unlikely 

to reason multiplicatively.  In contrast, among the nine students who spontaneously 

used BAMT, five (56%) could solve Problem #2, four (44%) could solve Problem #3, 

and six (67%) could solve Problem #4.  These data corroborate the prediction that 

students with strong composite unit—solving addition tasks by decomposing the 

second addend—are more likely to reason multiplicatively.  

DISCUSSION 

We examined how an element of Steffe’s (1992) model—children’s conception of 

number—might help predict their ability to reason multiplicatively.  We provided 

analysis of the conceptual foundations of students’ spontaneous use of three additive 

strategies—counting-on, doubling, and BAMT.  Importantly, students’ use of any of 

these strategies provides evidence that they have constructed a conception of number.  

Our study corroborated Steffe’s model: the strength of a child’s conception of number, 

as evidenced by their spontaneous use of an additive strategy, can help to predict their 

extant ability to engage in multiplicative reasoning.  Specifically, a child who 

spontaneously uses counting-on is highly unlikely to engage in multiplicative 

reasoning.  In contrast, a child who spontaneously uses BAMT is likely to do so.  

Keeping with Kilpatrick’s (2001) assertion, our study thus contributes to the field’s 

knowledge base by testing a long-known and well-articulated conceptual model that 

links, developmentally, students’ additive and multiplicative reasoning.  

Implications for Research. 

We note three implications of this study. First, it opened the way for identifying 1-2 

tasks that can indicate a child’s likelihood for advanced ways of reasoning based on 

observable, lower-level solutions. A future, larger N study may confirm the predictive 

power of a child’s additive strategy.  Second, a related measure to the one we used 

could be developed to examine the linkage between a child’s comprehension of a 

realistic word problem and her or his conception of number and/or multiplicative 

reasoning.  Third, this study implies the need to carefully examine the design and 

findings of studies intended to determine the impact of an instructional intervention on 

student learning and outcomes.  Lack of impact of such interventions may be rooted 

not in the intervention per se (Woodward & Tzur, in press), but in students’ lack of a 

cognitive prerequisite that affords the intended learning (e.g., lack of strong enough 

composite unit; see Tzur, Xin, Si, Kenney, & Guebert, 2010).   

Implications for Practice. 

For practice, our study implies the possibility to use a quick measure (screener 

Problem #1) to assess the strength of each student’s conception of number.  In our 

current project, teachers are learning to use it so they: (a) link between a child’s 

additive strategy and her MR, (b) can conduct short, task-based interviews to elicit 

students’ strategies, (c) document the results of their assessments, and (d) adapt their 

subsequent instruction to meet the needs of students in each group.  Teachers with 
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whom we work seem to deeply appreciate the main goal for each student who uses 

counting-on and doubling: strengthen her or his conception of number as composite 

unit by learning to decompose addends into sub-composite units. 
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