
CSTA: The Voice of K–12 Computer Science Education and its Educators

— 3 —

Contribute
to the

CSTA Voice
The editorial board of the CSTA Voice is
dedicated to ensuring that this publication
reflects the interests, needs, and talents
of the CSTA membership. Please
consider sharing your expertise and
love for computer science education by
contributing newsletter content.

Potential writers for the CSTA Voice
should send a brief description of the
proposed article, estimated word count,
statement of value to members, author’s
name and brief bio/background info, and
suggested title to the editor at: cstapubs@
csta.acm.org. The final length, due date,
and title will be negotiated for chosen
articles. Please share your knowledge.

Volunteer today!

The CSTA Voice
welcomes your

comments.
publications@csteachers.org

1-608-436-3050

Letters to the Editor are limited to 200
words and may be edited for clarification.

Let us know if
your contact

information changes.
t.nash@csta-hq.org

ACM founded CSTA as part of
its commitment to K–12

computer science education.

There has been much debate about the definition
of computational thinking (CT) and the relative
merits of different definitions. In this article, I
argue for a focused definition of CT that clearly
distinguishes it from other forms of thinking.

CT was popularized by Jeannette Wing in
2006 as the “thought processes involved in for-
mulating problems and their solutions so that the
solutions are represented in a form that can be
effectively carried out by an information-
processing agent.” Lee and Martin, CSTA CT
Task Force co-chairs, further simplified this defi-
nition in 2015 to “CT refers to the human ability
to formulate problems so that their solutions
can be represented as computational steps or
algorithms to be carried out by a computer.” For
the remainder of this article this will be referred
to as the “thought processes” definition of CT.

The Computing at School (CAS) curriculum
supports this description of CT. It explicitly
states, “the thinking that is undertaken before
starting work on a computer is known as CT”
(barefootcas.org.uk). Further, in UK’s Comput-
ing at School’s “Computational thinking: A
guide for teachers,” CT is clearly described as “a
thought process, not the production of artefacts
or evidence” (community.computingatschool.
org.uk/files/6695/original.pdf).

Abstraction, automation, and analysis, the
three pillars of CT as described by Cuny, Sny-
der, and Wing in 2011, have been observed in
students as young as middle school.
Students have demonstrated that they can de-
velop abstractions and automations as they study
and solve real-world problems in modeling and
simulation projects and robotics projects. Key
to this definition is that CT takes place when
students are “looking at a real-world problem in
a way that a computer can be instructed to solve
it.” In the context of modeling and simulation,
students were actively engaged in CT when they
selected features of the real world to incorpo-
rate into their models (abstraction), determined
which elements of the model need to be updated
as simulation time advanced (automation), and
analyzed the model’s inclusion the features
necessary to mimic the real world (analysis).

One of the merits of the “thought processes”
definition is that it is very specific to humans
harnessing computers as information processing
devices. This specificity makes it different from
critical thinking, mathematical thinking, and

scientific thinking. A difficulty with this defini-
tion is that a teacher or student new to computer
science (CS) may not be able to relate to this
definition of the practice. How does one formu-
late a problem and its solution so that it can be
carried out by a computer if one does not know
what a computer is capable of doing and how to
give a computer instructions? What differenti-
ates a poor formulation from a strong one?

Thus, after Wing’s definition was publicized,
other groups published their own interpretations
of CT, including the ISTE/CSTA Operational
Definition, “Computational Thinking Practices”
(AP CS Principles and Exploring CS, 2012),
“CT concepts, practices, perspectives” (Brennan
& Resnick, 2012), “CT Patterns” (Repenning,
2012), and “CT” (Exploring CT, Google, 2014).

Common among these definitions is an
expansion of CT to include many other prac-
tices. For example, the ISTE/CSTA “operational
definition of CT” was constructed to aid teachers
in seeing themselves as already teaching skills
that are components of CT.

While well-intentioned, the ISTE /CSTA
operational definition has caused confusion.
It is not well understood that an “operational
definition” is intended to be a definition of the
operations that make up a practice. Each opera-
tion is a part of the larger practice but does not
by itself equal the practice. Thus the operational
definition of CT describes various operations
that make up CT but conducting a single opera-
tion does not equal “doing CT.”

Unfortunately, all too often, the interpreta-
tion of the operational definition is that if you
are doing any one of the listed operations, you
are a computational thinker. This is not correct.
For example, logically organizing and analyzing
data is an operation described in the operational
definition of CT. But a student who organizes
data, without consideration of how a computer
program would direct a computer to read in,
store, and manipulate the data, is not doing CT.

In a similar vein, the AP CS Principles and
Exploring CS curricula describe “CT Prac-
tices” that extend beyond the original “thought
processes” definition of CT. The CT Practices
include “communicating computational thought
processes” and “collaborating with peers on
computing activities.” While these are both
valuable practices in CS education, they are not
necessarily part of “formulating a problem and

Reclaiming the Roots of CT
Irene Lee

VoiceVoice

— 4 —

It’s Election
Time

CSTA BOARD OF
DIRECTORS CANDIDATES

9 –12 Representative
Candidates

Stacey Kizer
Chinma Uche

At-Large Representative
Candidates

Myra Deister
Michelle Lagos

International
Representative Candidates

Miles Berry
Michael Jones

State Department
Representative Candidates

Anthony Owen
Doug Paulson

University Faculty
Representative Candidates

Darcy G. Benoit
Fred G. Martin

Read their personal
statements on page 10

its solution so that the solution can be carried
out by a computer.”

The expansion of definitions of “CT” and
definitions of “CT Practices” have led to an
erosion of the integrity of the “thought process-
es” definition of CT. Some have come to believe
that CT means everything and, consequently,
nothing at the same time.

Furthermore, the two terms “computational
thinking practices” and “computational think-
ing” often get conflated (or taken to mean the
same thing). In some circles, CT has come to
encompass “everything people think kids should
learn in CS,” including the iterative develop-
ment of software artifacts.

This losing of the original definition of CT
has serious ramifications. 1) We lose what is
special about CT—that the human is formulat-
ing a problem and its solution so that the solu-

tion can be carried out by a computer (not by a
human); 2) CT can be viewed as any task that
involves students thinking while on a computer
—troubleshooting hardware involves thinking
and computers, is it computational thinking? and
3) We lose sight of the power of CT to study and
solve real-world problems. If a student is doing
CT by writing and debugging some code, why
go further and address real-world problems?

I believe that CT is a skill that is developed
through repeated exposure to how real-world
problems are represented, studied, and solved
using computers as information processing
devices, and progressively deeper understand-
ing of what computers are able to do and how
to instruct them. Students can develop CT skills
through opportunities to map real-world prob-
lems into abstractions and algorithms that can be
represented and operated upon on a computer.

CT Driving Computing Curriculum in England
John Woollard

ISTE/CSTA “Operational Definition of Computational Thinking
for K-12 Education” (2011)

1. Formulating problems in a way that enables us to use a computer and other tools to

help solve them

2. Logically organizing and analyzing data

3. Representing data through abstractions such a models and simulations

4. Automating solutions through algorithmic thinking (a series of ordered steps)

5. Indentifying, analyzing, and implementing possible solutions with the goal of achieving

the most efficient and effective combination of steps and resources

6. Generalizing and transferring this problem-solving process to a wide variety of

problems

Computational thinking (CT) has come to
the fore for many teachers in England with
the advent of the new National curriculum in
England: computing programmes of study in
September 2013 (goo.gl/SklB9O). It is explicitly
and thoroughly embedded in the curriculum for
K–12. The first sentence states, “A high quality
computing education equips pupils to use com-
putational thinking and creativity to understand
and change the world.”

CT lies at the heart of the computing curric-
ulum but it also supports learning and thinking
in other areas of the curriculum. CT gives a new
paradigm for thinking about and understanding
the world more generally. Simon Peyton-Jones,
chair of Computing At School (CAS), succinctly
explains why learning computer science (CS)
and CT are core life skills, as well as being
eminently transferable, in a talk filmed at TEDx-
Exeter (bit.ly/13pJLCR).

CSTA: The Voice of K–12 Computer Science Education and its Educators

— 5 —

Meet the
Authors

Lissa Clayborn
Deputy Executive Director/Chief
Operations Officer, CSTA
Lissa has worked for over 20
years in the nonprofit educational
technology sector, including
ISTE.

Daryl Detrick
Warren Hills HS, NJ
Daryl is a CS educator and past
President of CSTA Central NJ
and is Co-chair of the CSNJ.

J. Philip East
University of Northern Iowa
Philip has been teaching
computing for over 35 years.
He is the Program Chair for the
CSTA Annual Conference.

Shuchi Grover
SRI International
Shuchi is a research scientist at
SRI’s Center for Technology in
Learning and a member of the
CSTA CT Task Force.

Stephanie Hoeppner
Williamsburg Local Schools, OH
Stephanie has taught CS for 16
years. She has served on the
CSTA Board of Directors and is
the Workshop Chair for the CSTA
Annual Conference.

Joe Kmoch
CSTA Wisconsin
Joe is a retired CS teacher now
working as a CS consultant. He is
a member of the CSTA CT Task
Force.

Irene Lee
MIT
Irene is a research scientist in
the Scheller Teacher Education
Program and Education Arcade.
She serves as a Co-chair of the
CSTA CT Task Force.

Fred G. Martin
University of Massachusetts
Lowell
Fred is a CS professor. He
serves as a Co-chair of the CSTA
CT Task Force.

John Woollard
CAS
John is a leading member of
Computing At School in the UK.
He serves as the Chair of the
Assessment working group and
Coordinator of the Tenderfoot
project.

CT skills are the set of mental skills that
convert “complex, messy, partially defined,
real-world problems into a form that a mindless
computer can tackle without further assistance
from a human,” the Chartered Institute for IT
(bit.ly/1Li8mdn).

In the UK, the term CT has been described in
different ways for different audiences but there
is a growing consensus that CT is a cognitive
or thought process involving logical reason-
ing by which problems are solved and artifacts,
procedures, and systems are better understood. It
embraces:

• the ability to think algorithmically;
• the ability to think in terms of decomposi-

tion;
• the ability to think in generalizations, iden-

tifying and making use of patterns;
• the ability to think in abstractions, choosing

good representations; and
• the ability to think in terms of evaluation.

CT skills enable pupils to access parts of the
computing subject content. Importantly, they re-
late to thinking skills and problem solving across
the whole curriculum and through life in general.

Where these thinking skills are being pro-
moted we see the pupils adopting approaches
to problem solving such as tinkering, creating,
debugging, persevering, and collaborating.
These are key features associated with successful
learning in computing and across the curricu-
lum. Computing, computer programming in
particular, enables tinkering to occur. Learners
are genuinely learning through trial and improve-
ment. We all know that perseverance is necessary
when debugging programs and we appreciate the
reward and feeling of satisfaction when creating
and collaborating.

A number of techniques can be employed to
enhance CT. Think of these as “computational
doing,” the computing equivalent of “scientific
methods.” They are the tools by which CT is
operationalized in the classroom, workplace, and
home: reflecting, coding, designing, analyzing,
and applying. These techniques enable CT skills
to be developed.

Reflection is the skill of making judgements
(evaluations) that are fair and honest in complex
situations that are not value-free. Within CS this
evaluation is based on criteria used to specify the
product, heuristics (or rules of thumb), and user
needs to guide the judgements.

An essential element of the development of
any computer system is translating the design
into code form and evaluating it to ensure that it
functions correctly under all anticipated condi-
tions. Debugging is the systematic application
of analysis and evaluation using skills such as
testing, tracing, and logical thinking to predict
and verify outcomes.

Designing involves working out the struc-
ture, appearance, and functionality of artifacts. It
involves creating representations of the design,
including human readable representations such
as flowcharts, storyboards, pseudo-code, systems
diagrams, etc. It involves activities of decompo-
sition, abstraction, and algorithm design.

Analyzing involves breaking down into
component parts (decomposition), reducing the
unnecessary complexity (abstraction), identifying
the processes (algorithms), and seeking common-
alities or patterns (generalization). It involves
using logical thinking, both to better understand
things and to evaluate them as fit for purpose.

Applying is the adoption of pre-existing
solutions to meet the requirements of another
context. It is generalization—the identification
of patterns, similarities and connections—and
exploiting those features of the structure or
function of artifacts. An example includes the de-
velopment of a subprogram or algorithm in one
context that can be re-used in a different context.

Computing At School, as a grass-roots and
free teacher-membership organization, has been
at the forefront of advising on the changes to
the curriculum and in providing much needed
support to both primary and secondary teachers
faced with the challenge of bringing into being a
new subject in UK schools.

LEARN MORE:
CT: A guide for teachers: www.
computingatschool.org.uk/news_items/26
CAS Barefoot: CPD for K–5 teachers:
barefootcas.org.uk
CAS Tenderfoot: CPD for 6–12 teachers: www.
computingatschool.org.uk/tenderfoot
CAS Community: community.
computingatschool.org.uk
CAS Resources for computational thinking:
community.computingatschool.org.uk/
resources/2324
CAS Network of Excellence: community.
computingatschool.org.uk/resources/802

