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Simultaneous Robustness against Random Ini-
tialization and Optimal Order Selection in Bag-
of-Words Modeling
Ibrahim F. Jasim Ghalyan
Sonia M. Chacko
Vikram Kapila

This article proposes an Enhanced Stochastically Robust and Op-
timized Bag-of-Words (ESRO-BoW) modeling technique that si-
multaneously accounts for the problems of robustness against
random initialization and optimal model-order selection in BoW
modeling. To address the aforementioned problems, the model-
ing performance of multiple executions of the BoW technique is
considered as a discrete random variable and the ESRO-BoW is
developed such that a convergence in mean is guaranteed for the
resulting sequence of random variables. The BoW model order
is tuned such that the expected value of the limit of the random
variable of the classification performance is maximized. Hence,
the ESRO-BoW realizes both robustness against random initial-
izations and selects the optimal BoW model order. In order to
evaluate its efficiency, the ESRO-BoW is applied to the classi-
fication of Caltech 101 image set and excellent performance is
obtained. Comparison with the state-of-the-art approaches, em-
ployed for classifying Caltech 101 image set, demonstrates the
superiority of the suggested ESRO-BoW modeling technique.
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• An enhancement to Bag-of-Words (BoW) is proposed to produce robustness against random initialization and optimal
model-order.

• Robustness against random initialization is realized by treating performance as a random variable and estimating its
limit.

• The optimal model order is estimated such that the expected value of the performance is maximized.

• The suggested BoW enhancement is applied to the Caltech 101 image set classification and excellent performance is
obtained.

• Comparison is conducted with the available state-of-the-art techniques and the superiority of the ESRO-BOW is demon-
strated.
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ABSTRACT

This article proposes an Enhanced Stochastically Robust and Optimized Bag-of-Words (ESRO-BoW)
modeling technique that simultaneously accounts for the problems of robustness against random ini-
tialization and optimal model-order selection in BoW modeling. To address the aforementioned prob-
lems, the modeling performance of multiple executions of the BoW technique is considered as a
discrete random variable and the ESRO-BoW is developed such that a convergence in mean is guar-
anteed for the resulting sequence of random variables. The BoW model order is tuned such that the
expected value of the limit of the random variable of the classification performance is maximized.
Hence, the ESRO-BoW realizes both robustness against random initializations and selects the optimal
BoW model order. In order to evaluate its efficiency, the ESRO-BoW is applied to the classification
of Caltech 101 image set and excellent performance is obtained. Comparison with the state-of-the-art
approaches, employed for classifying Caltech 101 image set, demonstrates the superiority of the sug-
gested ESRO-BoW modeling technique.

c© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Deep learning has recently emerged as one of the most
promising techniques to perform data-driven modeling, e.g.,
image classification, with impressive performance (see Lecun
et al. (2015) and references therein). However, deep learning
has been shown to be susceptible to multiple issues, e.g., weak
interpretability (Nguyen et al., 2015), requirement of large data
set (Camilleri and Prescott, 2017), sensitivity to imperfection
in the training (Papernot et al., 2016), among others. To avoid
such limitations, alternative scalable methods are frequently
utilized for data-driven modeling and the Bag-of-Words (BoW)
is considered one of the efficient interpretable modeling meth-
ods. Due to its excellent performance, the BoW modeling tech-
nique has attracted the interest of many researchers and practi-
tioners who have successfully employed it in fields such as text
recognition, computer vision, automation, heath-care, among
others. It consists of three key steps, feature extraction, quan-
tization, and classification, which are integrated to produce an

∗∗Corresponding author: Tel.: +1-646-997-3161; fax: +1-646-997-3532;
e-mail: vkapila@nyu.edu (and Vikram Kapila)

efficient technique applicable for various image classification
problems (Csurka et al., 2004).

In Lazebnik et al. (2006), spatial pyramid matching (SPM)
was introduced in the BoW modeling where images are par-
titioned into successively increasing fine sub-regions and his-
tograms of local features, inside the sub-regions, are computed.
The visual words, obtained in Lazebnik et al. (2006), are as-
sumed to be uniformly distributed. To relax the need for non-
linear classifiers with SPM, locality-constrained linear coding
(LLC) was introduced in which each descriptor is projected on
its local coordinate system leading to possible employment of
linear classifiers, simplifying computations encountered in the
case of nonlinear classifiers (Wang et al., 2010). The excellent
performance reported using the BoW modeling method spurred
many researchers to employ this modeling technique in classi-
fying human motion (Burghouts and Schutte, 2013; Hernández-
Vela et al., 2014; Iosifidis et al., 2014). Based on the local fea-
tures of the song level, BoW was efficiently utilized to classify
music sounds and promising results were obtained (Fu et al.,
2011). In dos Santos et al. (2015); Karakasis et al. (2015), the
BoW modeling technique was employed to produce an efficient
image retrieval process. By considering a set of words, in which
the order of the words is taken into account, the BoW was en-
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hanced to handle complex situations like accommodating pos-
sible scene occlusion (Bolovinou et al., 2013).

In Wu and Wong (2012), the BoW was efficiently employed
for segmenting and tracking multiple objects moving in a scene
by extracting, from the optical flow, the field pattern represent-
ing the collective movement of objects. A promising classifica-
tion technique between machine-printed and handwritten texts
was obtained by Zagoris et al. (2014) using the BoW mod-
eling technique that was coupled with an already trained and
optimal available codebook. Multisupport region order-based
gradient histogram (MROGH) technique has been integrated in
the BoW modeling approach by Shen et al. (2014) for classi-
fying human epithelial type 2 (HEp-2) cells. Specifically, the
MROGH enhanced the process of feature extraction when per-
forming the BoW and the overall results were promising. In
Mu et al. (2015), LLC is combined with spatial distribution
pooling (SDP) where the distribution of visual words is char-
acterized by Gauss mixture model (GMM), rather than the uni-
form distribution considered in Lazebnik et al. (2006), and im-
proved BoW modeling is reported. Additional developments
have been reported in the theory and application of the BoW
modeling process such as neural network-based BoW (Passalis
and Tefas, 2017), using the group of local words to develop
Bag-of-Expressions (BoE) (Nazir et al., 2018), among others.

In spite of the advances in BoW modeling and its applica-
tion, the problem of random initialization in BoW modeling
has not been addressed yet. In fact, this problem can lead to
solutions potentially getting trapped in local minima during the
implementation of the BoW steps, thus causing performance
degradation in the BoW modeling process. Moreover, poor or-
der selection of the BoW modeling can result in either models
that are not sufficiently representative of the phenomenon, if a
relatively small order is used, or overfitting, in the case of a
large order. Although a trial and error process is frequently fol-
lowed in estimating the BoW model order, it does not provide
an optimized model order for a given set of data, thus failing to
reveal the highest obtainable performance of the BoW model-
ing process. Moreover, despite the work reported in Yang et al.
(2007) concerning the relationship between the classification
performance and the BoW model order (i.e., the number of vi-
sual words of the model), automating the estimation process for
model order to produce optimal performance also remains to be
investigated.

In this paper, we propose an Enhanced Stochastically Robust
and Optimized Bag-of-Words (ESRO-BoW) modeling tech-
nique to address both the problems of random initialization
and model order selection. Thus, the main contributions of the
ESRO-BoW modeling technique of this paper are to simultane-
ously:

1. Develop models that are robust against random initializa-
tion of parameters.

2. Estimate the optimal model order that yields the optimal
modeling performance.

The performance of the BoW modeling is considered as a ran-
dom variable with robustification and optimization of this per-
formance as the main objective of this paper. Section 2 sum-
marizes the BoW modeling technique and several important

preliminary concepts are reviewed in section 3. Development
of the ESRO-BoW modeling technique is detailed in section 4
while the experimental validation is explained in section 5. Fi-
nally, section 6 provides some concluding remarks.

2. Bag-of-Words (BoW) Modeling Scheme

The BoW modeling process is composed of three main steps:
feature extraction, quantization, and classification. Below is a
brief description of these steps.

• Feature Extraction: Feature extraction is the first step of
the BoW and it consists of two sub-steps. In the first sub-
step the interest points of the image are detected using any
available technique such as scale-invariant feature trans-
form (SIFT), speeded up robust features (SURF), etc. (see
Bay et al. (2008); Szeliski (2011) for details about inter-
est points detection). The second step is to compute the
descriptor around each interest point detected in the first
step. Once again multiple techniques can be used for com-
puting these descriptors such as the histogram of oriented
gradients (HOG), wavelets, etc. (see Mohan et al. (2001);
Dalal and Triggs (2005); Szeliski (2011) for details about
computing the descriptors).

• Quantization: In quantization, three main steps are im-
plemented. The first step is to determine the location of
centroids of descriptors (also known as cluster centers) of
each image and the second step is to assign each of the
descriptor regions of the image to the closest cluster cen-
ter, thereby grouping the descriptors into subsets known
as visual words. Together these two steps are performed
iteratively and constitute the process of clustering that can
be performed by using k-means, fuzzy c-means, Gaussian
mixture model, among others (see Bishop (2006) for more
details about the clustering techniques). Finally, the third
step of quantization is to compute the frequency, or his-
togram, of each one of the visual words. Thus, the result
of the quantization process produces the histogram of the
visual words of each image. It is worth noting that the
quantization step involves random initialization of cluster
centers that might affect the performance of the BoW mod-
eling process.

• Classification: The classification is the last step of
the BoW modeling process in which the decision rule,
or boundary, is learned to distinguish between multiple
classes. Many techniques can be used for the classifica-
tion purpose such as decision tree classifier (DTC), lin-
ear discriminant classifier (LDC), support vector machine
(SVM), among others. Similar to the quantization step, the
classification step may involve random initialization of pa-
rameters that have a direct influence on the BoW modeling
performance.

3. Preliminaries

Before detailing the proposed technique, we summarize sev-
eral mathematical definitions and concepts that are helpful in
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developing the suggested ESRO-BoW. Readers familiar with
the measure and probability theories may skip this section while
those interested to know more about the preliminary concepts
below may review them from related texts (e.g., Rudin (1987);
Billingsley (1995)).

Suppose that we are given a set S and consider that Σ is a
collection of subsets of S .

Definition 1: Σ is called a σ-algebra in S if the following
conditions are met Rudin (1987).

1. S is a subset of Σ, i.e. S ∈ Σ.
2. If A ∈ Σ, then Ā1 ∈ Σ. Thus, all subsets of Σ should have

their complements, relative to S , to be subsets of Σ as well.
This property is called closed under the complement oper-
ation.

3. If A =
⋃∞

n=1 An with An ∈ Σ (n = 1, 2, 3, . . . ), then A ∈ Σ.
This means that the countable union of subsets of Σ is a
subset of Σ as well. This property is called closed under
countable union.

If Σ is a σ-algebra in S , then S is called a measurable space
that is usually denoted as a tuple (S ,Σ). Let us denote B to be
the smallest σ-algebra in S . B is called a Borel set of S if every
open set of S is a subset of B. Let (Ω,F , p) be the probability
space where Ω is a sample space2, F is a set of events3, and
p is a probability measure4(Billingsley, 1995). Now, a random
variable X can be defined to be a mapping X : Ω→ S such that
every Borel set B ∈ Σ has its pre-image in F , i.e. X−1(B) ∈ F .
This formal definition of random variable enables characteriza-
tion of conditions, given below, for the concept of convergence
of random variables. These concepts will be exploited in the
subsequent sections.

Definition 2: Consider {Xn} to be a sequence of random vari-
ables. {Xn} is said to be converging in probability to X∗ if for
every ε > 0, we have (Billingsley, 1995; Grimmett and Stirza-
ker, 2001)

lim
n→∞ p(|Xn − X∗| > ε) = 0. (1)

Establishing the convergence in probability of a random vari-
able may be practically difficult. Thus, a more practical ap-
proach of assessing the convergence of a random variable,
called convergence in mean, is provided in the definition below.

Definition 3: The random variable {Xn} is said to be con-
verging in the r-th absolute moment of (Xn−X∗) if the expected
value of |Xn − X∗|r tends to zero as n tends to ∞ (Billingsley,
1995), i.e.,

lim
n→∞ E(|Xn − X∗|r) = 0, (2)

where E(·) is the expected value.
Definition 3 provides a practical approach to check the con-

vergence of a random variable since the convergence in mean
implies the convergence in probability. However, in practice,

1Ā is the complement of A.
2A sample space of an experiment is the set of all possible outcomes of the

given experiment.
3An event is a set of outcomes including zero.
4A probability measure is a real-valued function assigning numbers to the

events of the experiments.

there are situations where the random variable is a result of a
certain computational process, as in this paper, and the con-
vergence in mean may become computationally expensive and
cumbersome to be validated. Thus, the characteristic of ergod-
icity of a stochastic process can simplify the determination of
the convergence of a random variable from a certain subset of
samples of the variable, as illustrated by the following defini-
tion of ergodicity.

Definition 4: A discrete random variable Xn = {x1, x2, ..., xI}
is said to be an ergodic process in mean if µ̂Xn , described by

µ̂Xn =
1
I

I∑

i=1

xi, (3)

converges to the ensemble average E(Xn) as I → ∞ (Papoulis
and Pillai, 2002).

Thus, checking the ergodicity of the random variable is crit-
ical because if the random variable is an ergodic process, then
the computational burden will be significantly reduced, as will
be seen in the sequel. Throughout this paper, we use the nota-
tion N(µ, σ2) to denote a normal distribution with mean µ and
standard deviation σ2.

4. Enhanced Stochastically Robust and Optimized Bag-of-
Words (ESRO-BoW) Modeling Process

The ESRO-BoW is developed to achieve two main objec-
tives: guaranteeing the robustness against random initializa-
tion and estimating the optimal model order of the modeling
process. Below is a detailed description of the stages through
which the ESRO-BoW can be realized.

4.1. Robustness Against Random Initialization

Assume that the number of visual words M is given to model
a certain set of images G. Let C be the performance achieved
by using the BoW model MBoW in classifying the image set
G. In order to have a confident evaluation of the BoW model-
ing process, we propose to perform the given task I times and
we denote the resulting performance of the ith iteration to be xi.
Then, one can form a random variable, denoted as X1, repre-
senting the values of the performance for the I times as follows

X1 = {x1, x2, ..., xI}. (4)

By repeating the above process N times, a sequence of random
variables results that is denoted as XT and given by

XT = {X1, X2, ..., XN}. (5)

The convergence in mean of the discrete random variable Xn,
n = 1, 2, . . .N, to a random variable X∗ implies the convergence
in probability (Billingsley, 1995), i.e., it follows that X∗ is the
most probable random variable of XT. Thus, the estimated X∗ is
the robust performance of the BoW model despite the existence
of random initialization. Based on Definition 3 and using the
definition of the limit, it follows that limn→∞ E(|Xn − X∗|r) = 0
implies that for any real ε ∈ R and ε > 0 there exists N ∈ Z+,
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Algorithm 1 Robust Bag-of-Words (R-BoW) Modeling
1: Inputs:

Enter the set of images G
2: Initialize:

A random variable X ∼ N(µ, σ2), number of
visual words M, tolerance ε, and positive
integer r

3: n← 0
4: repeat
5: n← n + 1
6: for i = 1 to I do
7: Estimate the BoW modelMBoW for classifying the

set of images G
8: Compute the performance C ofMBoW

9: xi ← C
10: end for
11: Xn ← {x1, ..., xI}, µn ← E(Xn), σ2

n ← E(X2
n) − E(Xn)2

12: mr ← E(|Xn − X|r), X ← Xn

13: until mr < ε
14: µ∗ ← µn, σ∗ ← σn, X∗ ← N(µ∗, σ∗2)
15: Outputs:

X∗

where Z+ is the set of positive integers, such that for every n ∈
Z+ and n ≥ N we have (Rudin, 1976)

|E(|Xn − X∗|r)| < ε. (6)

Thus, if ε is chosen to be arbitrarily small, then one can use
(6) to measure the convergence of the random variable Xn, n =

1, 2, . . .N. Based on the notion above, Algorithm 1 is developed
in which a Robust BoW (R-BoW) classifier is determined by
employing (6) as a stopping criterion for the convergence of
the performance, of the BoW model, that is considered as a
sequence of random variables XT.

The random variable X∗ represents the limit to which the se-
quence Xn converges and its mean µ∗ gives the expected value
of the robust performance for the BoW modeling process de-
spite the randomness of the initialization. As shown below, the
expected value of the robust performance plays a key role in
estimating the optimal performance that can be obtained using
the proposed modeling technique. Algorithm 1 is applicable
for both ergodic and non-ergodic processes. However, for the
case of ergodic processes, which happens to be the case with
many BoW modeling processes, one can simplify Algorithm 1
by relaxing the need for iterations of the outer loop since only
one run of the loop is sufficient for ergodic processes. Thus for
the case of ergodic BoW modeling processes, one can use Al-
gorithm 2 to produce a Stochastically Robust-BoW (SR-BoW)
modeling technique. The SR-BoW modeling technique is ap-
plicable when the modeling process is ergodic resulting in a sig-
nificantly faster implementation compared to the R-BoW im-
plementation of Algorithm 1. Though Algorithms 1 and 2 ad-
dress the sensitivity of the BoW modeling process with respect
to random initialization, the selection of the optimal model or-
der, i.e., the number of visual words, remains open. Thus,
the next subsection addresses the estimation of the number of
words resulting in the optimal performance.

Algorithm 2 Stochastically Robust Bag-of-Words (SR-BoW)
Modeling

1: Inputs:
Enter the set of images G

2: Initialize:
Number of visual words M and a positive
integer r

3: for i = 1 to I do
4: Estimate the BoW modelMBoW for classifying the set

of images G
5: Compute the performance C ofMBoW

6: xi ← C
7: end for
8: X ← {x1, ..., xI}, µ∗ ← E(X), σ∗2 ← E(X2) − E(X)2

9: X∗ ← N(µ∗, σ∗2)
10: Outputs:

X∗

4.2. Order Selection of BoW Models

Suppose that the number of words M can take any value in
the set MΩ = {2, 3, ...,Mu}. Consider that Xn ∼ p(Xn|θ) and let
θ ∼ p(θ|M). Using the Bayes rule, we can obtain the posterior
distribution of the parameter θ to be

p(θ|Xn,M) =
p(Xn|θ,M)p(θ|M)

p(Xn|M)
. (7)

Assuming the term p(Xn|θ,M) to be a Markov process, we ob-
tain

p(Xn|θ,M) = p(Xn|θ). (8)

Using (7) and (8) yields

p(θ|Xn,M) =
p(Xn|θ)p(θ|M)

p(Xn|M)
. (9)

From (9), we have

p(θ|Xn,M) ∝ p(Xn|θ)p(θ|M). (10)

The posterior predictive distribution at the limit of the sequence
Xn, i.e., X∗, is given by

p(X∗|Xn,M) =

∫

θ

p(X∗|θ)p(θ|Xn,M)dθ. (11)

Let M∗ be the optimal value of M that maximizes the poste-
rior predictive distribution p(X∗|Xn,M). From (10) and (11),
it is obvious that p(X∗|Xn,M) increases as p(X∗|θ) and p(θ|M)
increase. Let X∗(M) denote the limit of the sequence of the ran-
dom variables Xn for a given number of visual words M. Then,
M∗ is determined from

M∗ = arg max
M

E(X∗(M)). (12)

Hence, (12) is a good measure for finding the optimal num-
ber of visual words M in the BoW modeling process. How-
ever, M is required to have known upper and lower bounds, i.e.,
M ∈ [M,M] where M,M ∈ Z+ and M > M. Thus, one can
integrate (12) with the SR-BoW modeling technique to develop
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BoW models that are simultaneously robust against random ini-
tialization and estimate the optimized model order. The result-
ing algorithm is a Stochastically Robust and Optimized-BoW
(SRO-BoW) modeling technique that is detailed in Algorithm
3 above.

Algorithm 3 Stochastically Robust and Optimized Bag-of-
Words (SRO-BoW) Modeling

1: Inputs:
Enter the set of images G

2: Initialize:
The step size h and a positive integer r

3: EM∗ ← 0
4: for M = M to M do
5: for i = 1 to I do
6: Estimate the BoW modelMBoW for classifying the

set of images G
7: Compute the performance C ofMBoW

8: xi ← C
9: end for

10: X∗M ← {x1, ..., xI}, µM ← E(X∗M)
11: X ← X∗M , σ2

M ← E(X∗M
2) − E(X∗M)2

12: end for
13: M∗ ← arg max

M
µM , X∗M∗ ← N(µM∗ , σ

2
M∗ )

14: Outputs:
X∗M∗ , M∗

Though finding the optimal number of the visual words using
Algorithm 3 is efficient, it requires a significant amount of com-
putational cost. The main reason behind such computational
burden in Algorithm 3 is a consequence of computing the ex-
pectation for all values of M = {Z+ : Z+ ∈ [M,M]} that makes
the algorithm complexity to be O((M − M) × I). To overcome
this computational burden, we can assume that the expectation
of X∗(M) is locally maximum for zero difference with respect
to M. That is,

lim
M→M∗

∆E(X∗(M)) = 0. (13)

Since M is an integer, it follows that ∆E(X∗(M)) can be repre-
sented by E(X∗(M)) − E(X∗(M − h)) where h is the step size of
the increment in M such that h ∈ Z+ and h , 0. Thus, we obtain

lim
M→M∗

E(X∗(M)) − E(X∗(M − h)) = 0. (14)

From (14) and by invoking the definition of limits, for each real
number εM ∈ R and εM > 0 there exists a positive number δ
such that |M − M∗| < δ implies

|E(X∗(M)) − E(X∗(M − h))| < εM . (15)

Based on (15), an Enhanced Stochastically Robust and
Optimized-BoW (ESRO-BoW) modeling technique is devel-
oped and is detailed in Algorithm 4 wherein (15) is used as
a stopping criterion for finding the optimal number of visual
words that optimizes the performance of the BoW models. The
convergence of the difference in expectation EM∗ − EMo to the
open ball BεM (E(X(M∗))) becomes feasible before the outer
loop ends rendering the complexity to be less than O((M−M)×

Algorithm 4 Enhanced Stochastically Robust and Optimized
Bag-of-Words (ESRO-BoW) Modeling

1: Inputs:
Enter the set of images G

2: Initialize:
A random variable X ∼ N(µ, σ2), step size h,
tolerance εM and positive integer r

3: M ← M − h, EM∗ ← 0
4: repeat
5: M ← M + h
6: for i = 1 to I do
7: Estimate the BoW modelMBoW for classifying the

set of images G
8: Compute the performance C ofMBoW

9: xi ← C
10: end for
11: X∗M ← {x1, ..., xI}, µM ← E(X∗M)
12: σ2

M ← E(X∗M
2) − E(X∗M)2

13: if µM > EM∗ then
14: EMo ← EM∗ , EM∗ ← µM , µ∗M ← µM , σM∗

2 ← σ2

15: end if
16: until |EM∗ − EMo | < εM

17: M∗ ← M, X∗M∗ ← N(µ∗, σ∗2)
18: Outputs:

X∗M∗ , M∗

Fig. 1. Schematic diagram of the convergence of the ESRO-BoW modeling
process.

I). Figure 1 visualizes the convergence of the ESRO-BoW mod-
eling process where each row represents a random variable of
the classification performance for I-times execution of the BoW
for each value of M. It is obvious from Figure 1 that the stop-
ping condition (15) is checked with each increment of M. As
soon as (15) is met, the algorithm stops otherwise the value of
M is increased, the random variable of the classification perfor-
mance is re-collected, and the computations are re-iterated until
(15) is met.
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5. Experimental Validation

To evaluate the performance of the ESRO-BoW, we consider
the image classification problem of the Caltech 101 image set
composed of 101 categories with 40 − 800 images per category
(see Fei-Fei et al. (2004) for more details about this image set).
The ESRO-BoW modeling technique of Algorithm 4 was em-
ployed in classifying this standard image set. The value of εM

was taken to be 0.2%, r was considered to be 1, I was taken to
be 1, 000 samples and X was initialized to be N(0, 0.1). The
grid method was used to select the locations of feature points
while SURF method was employed to extract the features from
the located feature points. The k-means clustering technique
was employed in the quantization step and Quadratic Support
Vector Machine (QSVM) classification technique was consid-
ered in the classification step.

To assess the performance of the ESRO-BoW of Algorithm
4, the aforementioned image set was employed for three cases:
5, 15, and 30 training images. Figure 2 (a), (b), and (c) show
that the distribution of the ESRO-BoW classification perfor-
mance for the cases of 5, 15, and 30 training images, respec-
tively, where the axes of the graphs represent the number of
words, classification performance, and density of the classifi-
cation performance. Even though the ESRO-BoW algorithm
stopped at M = 900, M = 1, 200, and M = 1, 700 for the cases
of 5, 15, and 30 training images, respectively, we extended the
graphs in Figure 2 by computing the corresponding values until
2, 000 words to gain a full understanding of the performance
of the ESRO-BoW modeling process. From Figure 2 (a), (b),
and (c), it can be seen that the classification performance in all
three cases produces a stochastic behavior in the sense that their
performance is not a fixed value for a fixed number of words.
Such a stochastic behavior stems from the nature of BoW and
its dependence on the arbitrary initialization of sets of param-
eters, in the quantization and classification steps, rendering the
performance to vary with multiple executions of the modeling
process for a fixed value of M.

To examine the performance of the three ESRO-BoW execu-
tions shown in Figure 2 (a), (b), and (c), we plotted the expecta-
tion of the obtained distributions in Figure 3 (a) that concretely
illustrates the performance for each of the considered ESRO-
BoW implementation. The local maximum expected value was
realized with M = 900, M = 1, 200, and M = 1, 700 words
for the cases of 5, 15, and 30 training images, respectively,
where the ESRO-BoW modeling process stopped. Thus, in ad-
dition to its robustness, the ESRO-BoW technique can iden-
tify the number of words resulting in local maximum expected
value of the classification performance. The local maximum
expected value of the classification performance was found to
be 52.26%, 70.01%, and 75.02% for the cases of 5, 15, and 30
training images, respectively. If we examine the behavior of the
expected value of the classification performance for the three
ESRO-BoW implementations shown in Figure 3 (a), one can
see that the increment of M beyond the aforementioned points
of local maxima does not necessarily imply the increment in
the classification performance. In fact, excessively large values
of M can lead to overfitting that degrades the performance of
the modeling process. Figure 3 (b) shows the standard devi-

Fig. 2. ESRO-BoW 3-dimensional classification performance with Caltech
101 image set: (a) 5 training images, (b) 15 training images, and (c) 30
training images.

ation of the considered ESRO-BoW technique with respect to
the number of visual words for the cases of 5, 15, and 30 train-
ing images. It is clear from Figure 3 (b) that the value of the
standard deviation at 900 words, for the case of 5 training im-
ages, is more than its neighborhood which gives the impression
that along with the highest expected value of the classification
performance shown in Figure 3 (a), we obtain a local maxi-
mum classification performance when the number of words is
900. Likewise for the 15, and 30 training images, the values
of their standard deviation are higher than their corresponding
neighborhoods implying the fact that local maxima of the clas-
sification performance are obtained at 1, 200 and 1, 700 words
for the cases of 15 and 30 training images, respectively. Fixing
the number of words to be 900, 1, 200, and 1, 700 for the cases
of 5, 15, and 30 training images, respectively, we graphed the
histograms of the 1, 000 samples of each case of the considered
number of training images as shown in Figure 4. The value of
the ensemble average of the 1, 000 samples of the performance
of the ESRO-BoW was computed to be 53.15%, 71.98%, and
76.74%, respectively. The error between the ensemble averages
and the means were computed to be 0.89%, 1.97%, and 1.72%
with 5, 15, and 30 training images, respectively. It is obvi-
ous that the values of errors between the ensemble average and
mean are relatively small which, according to Definition 4, sug-
gests that the given process is an ergodic process. Note that the
aforementioned errors result because we considered a random
variable of only 1, 000 samples to model the process. Our ex-
periment shows that as the number of samples is increased from
1, 000, the error between ensemble averages and the means con-
tinues to reduce. However, for computational efficiency, we
have opted to limit the number of samples to 1, 000.

The maximum classification performance obtained using
ESRO-BoW for the cases of 5 (with 900 words), 15 (for 1, 200
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Fig. 3. Caltech 101 image set performance for 5 training images, 15 training
images, and 30 training images: (a) The expected value of the classification
performance, (b) The standard deviation of the classification performance.

words), and 30 (with 1, 700 words) training images are 67.61%,
80.52%, and 85.35%, respectively, that represent local maxima
for the considered numbers of training images. Table 1 summa-
rizes the classification performance of the ESRO-BoW model-
ing technique compared with that of alternative, well-known,
state-of-the-art works used for the classification of the Caltech
101 image set. The results of Table 1 lead us to conclude
that the ESRO-BoW modeling technique yields a significant
enhancement when employed for classifying the Caltech 101
image set. The main reasons behind such improvement with
the ESRO-BoW modeling are the use of the optimal number of
words and accommodating the problem of random initialization
encountered in the steps of the BoW modeling process.

Non-optimal performance resulting from random initializa-
tion and non-optimal parameters cause performance degrada-
tion due to being trapped at local minima in the quantization
and classification steps of the BoW process since both involve
differentiations in their implementation. It is worth noting that
the BoW modeling performance can be enhanced by using the
k-means++ clustering technique in the quantization step. How-
ever, employing the k-means++ resulted in classification per-
formance of 61.03%, 75.74%, and 78.29% for the cases of 5,
15, and 30 respectively which is less than the corresponding
performance of the ESRO-BoW modeling technique, giving an
impression that the k-mean++ does not fully address the prob-
lems of random initialization that are encountered in the quan-
tization and classification steps of BoW process.

The model order, or the number of words M, of the ESRO-
BoW is tuned such that the model order resulting in the highest
classification performance is selected for each one of the afore-
mentioned cases. Employing (15) as a stopping condition is the
main reason behind finding the optimal value of M since it re-
lies on finding the value that makes the difference equation of
the expected value, with respect to M, to be zero (see (13)-(15)).
Even though such difference equations can not be claimed to re-
sult in a global maximum of the expected value, it can produce
the value of M that locally maximizes the expected value of the
classification performance. Thus, employing the ESRO-BoW

Fig. 4. Histograms of the performance of ESRO-BoW technique applied to
Caltech101 image set: (a) 5 training images with M = 900, (b) 15 training
images with M = 1200, and (c) 30 training images with M = 1700.

Table 1. Classification performance of Caltech101 image set for 5, 15, and
30 training images situations.

Training Images 5 15 30
Method Performance

SPM-BoW (Lazebnik et al., 2006) 56.4 64.6
SVM-KNN (Zhang et al., 2006) 46.6 59.05 66.23

NBNN (Boiman et al., 2008) 44.2 59.05 66.23
NBNN Kernel (Tuytelaars et al., 2011) 61.3 69.6

LSPM (Yang et al., 2009) 67.0 73.2
M-HMP (Bo et al., 2013) 82.5

GPP (Xie et al., 2014) 61.90 76.03 82.45
LLC+SDP (Mu et al., 2015) 53.6 69.7 77.1

ESRO-BoW 67.61 80.52 85.35

technique relaxes the need to know the number of words and it
automatically computes the value of M to maximize the classi-
fication performance. During the execution of the ESRO-BoW
modeling technique, the step size h was increased with multi-
ple, arbitrarily chosen values such that it can realize the ESRO-
BoW in a reasonable time. However, optimizing the value of h
while considering the computational time as a cost function can
result in an optimal value of h.

6. Conclusion

In this paper, an ESRO-BoW modeling technique is devel-
oped to address the problems of sensitivity of the BoW per-
formance to random initialization and number of visual words.
The robustness against parameter initialization is realized by
considering the performance as a sequence of random variables
and the limit of the resulting sequence is estimated using the
convergence in mean. The sequence of obtained random vari-
ables results in a distribution of performance which helps deter-
mine the optimal number of words that maximizes the expected
value of the limit of the random variable. Thus, the ESRO-
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BoW technique achieves simultaneous robustness against ran-
dom parameter initialization and optimization of the number of
words. Experimental validation was conducted for classifying
the Caltech 101 image set and application of the ESRO-BoW
technique was shown to yield a significantly superior classifica-
tion performance relative to several state-of-the-art techniques.
Despite the excellent performance reported for the ESRO-BoW,
the step size of the increment of the number of words was al-
tered in an ad hoc fashion which may adversely affect the com-
putational cost. Thus, future research will focus on develop-
ing a formal methodology to determine the step size increment
that minimizes the computational time of the ESRO-BoW tech-
nique. Moreover, deriving a closed form relationship that maps
the number of words with the shape of the classification perfor-
mance will give a direct estimation of the optimal number of
visual words.
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S., Baró, X., Pujol, O., Angulo, C., 2014. Probability-based dynamic time

warping and bag-of-visual-and-depth-words for human gesture recognition
in rgb-d. Pattern Recognition Letters 50, 112–121.

Iosifidis, A., Tefas, A., Pitas, I., 2014. Discriminant bag of words based rep-
resentation for human action recognition. Pattern Recognition Letters 49,
185–192.

Karakasis, E., Amanatiadis, A., A.Gasteratos, Chatzichristofis, S., 2015. Image
moment invariants as local features for content based image retrieval using
the bag-of-visual-words model. Pattern Recognition Letters 55, 22–27.

Lazebnik, S., Schmid, C., Ponce, J., 2006. Beyond bags of features: spatial
pyramid matching for recognizing natural scene categories, in: 2006 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
New York, NY. pp. 1–8.

Lecun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
Mohan, A., Papageorgiou, C., Poggio, T., 2001. Example based object de-

tection in images by components. IEEE Trans. Pattern Anal. and Machine
Intell. 23, 349–361.

Mu, G., Liu, Y., Wang, L., 2015. Considering the spatial layout information
of bag of features (bof) framework for image classification. PLOS ONE 10,
1–13.

Nazir, S., Yousaf, M., Nebel, J., Velastin, S., 2018. A bag of expression frame-
work for imrpoved human action recognition. Pattern Recognition Letters
103, 39–45.

Nguyen, A., Yosinski, J., Clune, J., 2015. Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images, in: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 427–
436.

Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.,
2016. The limitations of deep learning in adversarial settings, in: IEEE
European Symposium on Security and Privacy (EuroS P), pp. 372–387.

Papoulis, A., Pillai, S.U., 2002. Probability, Random Variables, and Stochastic
Processes, 4th Ed. McGraw-Hill, Inc., New York, NY, USA.

Passalis, N., Tefas, A., 2017. Neural bag-of-features learning. Pattern Recog-
nition 64, 277 – 294.

Rudin, W., 1976. Principles of Mathematical Analysis, 3rd Ed. McGraw-Hill,
Inc., New York, NY, USA.

Rudin, W., 1987. Real and Complex Analyasis, 3rd Ed. McGraw-Hill, Inc.,
New York, NY, USA.

dos Santos, J., de Moura, E., da Silva, A.S., Cavalcanti, J., da Silva Torres, R.,
Vidal, M., 2015. A signature-based bag of visual words method for image
indexing and search. Pattern Recognition Letters 65, 1–7.

Shen, L., Lin, J., Wu, S., Yu, S., 2014. Hep-2 image classification using inten-
sity order pooling based features and bag of words. Pattern Recognition 47,
2419–2427.

Szeliski, R., 2011. Computer Vision: Algorithms and Applications. Springer-
Verlag, London, UK.

Tuytelaars, T., Fritz, M., Saenko, K., Darrell, T., 2011. The NBNN kernel, in:
International Conference on Computer Vision, Barcelona, Spain. pp. 1824–
1831.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y., 2010. Locality-
constrained linear coding for image classification, in: IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, pp. 3360–
3367.

Wu, S., Wong, H., 2012. Joint segmentation of collectively moving objects
using a bag-of-words model and level set evolution. Pattern Recognition 45,
3389–3401.

Xie, L., Tian, Q., Wang, M., Zhang, B., 2014. Spatial pooling of heterogeneous
features for image classification. IEEE Transactions on Image Processing
23, 1994–2008.

Yang, J., Jiang, Y.G., Hauptmann, A., Ngo, C.W., 2007. Evaluating bag-of-
visual-words representations in scene classification, in: Proc. Int. Work.
Mult. Inform. Retr., Augsburg, Germany. pp. 197–206.

Yang, J., Yu, K., Gong, Y., Huang, T., 2009. Linear spatial pyramid match-
ing using sparse coding for image classification, in: IEEE Conference on
Computer Vision and Pattern Recognition, Miami, FL. pp. 1794–1801.

Zagoris, K., Pratikakis, I., Antonacopoulos, A., Gatos, B., Papamarkos, N.,
2014. Distinction between handwritten and machine-printed text based on
the bag of visual words model. Pattern Recognition 47, 1051–1062.

Zhang, H., Berg, A.C., Maire, M., Malik, J., 2006. SVM-KNN: discrimina-
tive nearest neighbor classification for visual category recognition, in: IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), New York, USA. pp. 2126–2136.


