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ABSTRACT
User modelling algorithms such as Performance Factors Analysis 
and Knowledge Tracing seek to determine a student’s knowledge 
state by analyzing (among other features) right and wrong 
answers.  Anyone who has ever graded an assignment by hand 
knows that some answers are “more wrong” than others; i.e. they 
display less of an understanding of the skill(s) involved.  This 
investigation seeks to understand the effects of progression 
through wrong answers to right answers in a way to determine 
how the “level” of wrongness affects future performance.  The key 
findings are that A.) where in a series of opportunities a student 
reaches the goal impacts future performance, as does B.) the 
“level” of previous wrongness, even two questions before the 
current opportunity.

Right students are all alike; 
every wrong student is wrong in his or her own way.

(with apologies to Ms. Karenina and Mr. Tolstoy)

1. INTRODUCTION
The use of algorithms to estimate student knowledge based on 
performance on intelligent tutoring systems (ITS) has been around 
for two decades.  Two of the more well-known methods are 
knowledge tracing (KT) [6] and performance factors analysis 
(PFA) [11].  Both models use a student’s right or wrong answers 
and develop a model to estimate the chance that a student has 
“learned” a particular skill.  KT uses Bayes nets to determine four 
parameters per skill; PFA uses logistic regression to determine 
three parameters per skill.  Although the order of correctness is 
incorporated into the models, both use only correctness as their 
input.  Other pieces of information that may be collected by the 
ITS are neglected in these models.

ITS may collect any number of additional pieces of information 
about a student, their actions, their exact answers, etc.  For 
example, Baker et. al. use over 20 features to make their 
predictions [2].  Some even make use of biometrics through 
additional sensors. (See Cavalio and D’Mello’s review of several 
methods [3]. The goal of many of these algorithms is to try to 

make a computer tutor that is at least as responsive, observant, and 
effective as a human tutor would be.  Incorporating more data 
about a student’s affect can be seen as an attempt to give a 
computer access to the information that a human tutor would 
notice.  However, the more detailed that a model becomes, the 
more computationally time-consuming it becomes.  Also, as the 
number of inputs increases, fewer ITS’s can make use of it (as a 
complex set of inputs may not be collected on all systems).  One 
feature that might be incorporated into these algorithms is the use 
of the number of attempts and hints a student uses to answer a 
problem to classify more conditions than binary right and wrong 
and to look for the effect of how long it takes a student to achieve 
a particular classification.

Human teachers often employ the idea of partial credit, both as a 
motivational tool, and as a more accurate measure of knowledge 
(when compared to the binary correctness).  Any teacher who has 
graded papers knows that some wrong answers (and workflow) 
demonstrate a nearly full understanding of a skill, while other 
wrong answers demonstrate a near-total lack of understanding.  
The idea of using dynamic testing (that is, a testing medium that 
gives hints to and tracks the number of attempts made by students) 
has been around since at least the 1980’s.  Bryant, Brown and 
Campione [5] compared traditional testing (binary correctness) to 
dynamic testing (tracking how many hints students needed to be 
successful).  Others (e.g. Grigorenko and Sternberg) reviewed this 
kind of dynamic testing (among other methods) [8] and concluded 
that dynamic testing provides a more accurate measure [12]

Unfortunately, some ITS’s can only determine the “worthiness” of 
a wrong answer if all wrong answers are somehow programmed 
in.  Some ITS’s do make use of pre-programmed wrong answers, 
but partial credit may or may not be given. Efforts before this one 
have been made to use partial credit to measure student knowledge 
[16]. E.g., in ASSISTments1, wrong answers may be programmed 
to give a student a particular message, but A.) students are still 
marked completely wrong (and given no credit) and B.) all of 
these wrong answer messages must be programmed into the 
problems (which is incredibly time-intensive).

A more common method of assigning partial credit in ITS’s is to 
give partial credit based on the number of attempts it takes a 
student to get the right answer [1] and/or the number of hints a 
student uses [9].  This is much faster to program, and does not 
require looking at all possible wrong answer to determine which 
ones show a limited understanding of the skill (as opposed to no 
understanding of the skill).  The basic argument would be that a 
student who is “only slightly wrong” might figure out her mistake 

1 ASSISTments is an online learning system primarily for math,
based out of Worcester Polytechnic Institute. 
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after only one wrong attempt, while a student who is “very wrong” 
might need several hints and several attempts before he can get the 
problem right. We are not analyzing specific wrong answers in 
this treatment; we using a student’s partial credit history to modify 
the probability of that student getting the next question correct.

In this paper, we are analyzing a dataset from ASSISTments from 
the years 2012-2013.  (The dataset contains ~ 500K student-
problem instances; the content is mainly middle-school 
mathematics.)  We analyze the student entries for patterns of 
attempts, hints use, and a simplistic order of actions to determine 
“bins” of students.  We are also able to analyze the data to seek 
patterns of moving through bins (that is, as a single student uses 
more or less assistance on subsequent problems), and when in a 
particular opportunity count a bin (or sequence of bins) is 
encountered.  We build off of our earlier work presented at the 
Learning Analytics & Knowledge Conference, 2015.

1.1 Background 
In our previous work [13], we built off of other works that looked 
at attempt use, hint use (Assistance Model – AM – [15]), and 
simple sequence of action (Sequence of Action model – SOA – [7 
and 17]), and modified and combined these models to make our 
own.  We looked at the combination of number of attempts used to 
get the right answer, hint use, whether the “bottom-out hint” 
(BOH) was used, and a simplistic order of actions.  In our model, 
the values for each parameter were:

attempt use: 1, 2, 3, 4, (5+)
hint use: 0, 1, 2, (3+)
first action: hint or attempt
BOH: used or not used

This gave us 35 different combinations.  By analyzing the 
similarities of actions and future performance - defined as the 
average next problem correctness (NPC) and found by using pivot 
tables on 80% of the dataset, the 35 bins were combined into only 
16.  This gave us the “Fine-Grain Action” model (FGA).  Table 1 
shows the bins and re-grouped bins, and the NPC values.

Table 1a: The Fine-Grain-Action model 
1st action = attempt

1 att. 2 att. 3 att. 4 att. 5 + att.

0 hint 0.8156
Bin 1

0.7380
Bin 2

0.6771
Bin 3

0.6380
Bin 4

0.6211
Bin 5

1 hint ----- 0.7012
Group A

0.6321
Group C

2 hint -----
0.5812

Group E3+ 
hint -----

BOH 0.5099
Group G

Table 1b: The Fine-Grain-Action model 
1st action = hint

1 att. 2 att. 3 att. 4 att. 5 + att.
0 hint ----- ----- ----- ----- -----

1 hint 0.7083
Bin 6

0.6192
Group B

0.5702
Group D

2 hint 0.5250
Bin 11 0.4688

Group F3+ 
hint

0.4118
Bin 16

BOH 0.3396
Group H

1.2 Research Questions
Extending from our previous analysis, we have three questions we 
want to address here:
1.) What is the significance of the bins?

a) What is the statistical significance of the different bins?  E.g.
are bins “x” and “y” (arbitrary names) reliably different?

b) Can the bins be re-grouped into larger groups without loss 
of predictive power?  (E.g. Why 16?  Why not 35 or 3?)

2.) Can the sequence of students moving through “Super Bins” 
be used to make more accurate predictions?  (E.g. Is there a 
difference in expected outcome when comparing a student 
who moves from Super Bin 3 to 1 vs. 5 to 1?)

3.) Should all wrong answers be treated equally?  Can we use 
reasonably simple and replicable methods to identify what 
student actions demonstrate different levels of understanding 
of the material?
a) Is there an impact of bin sequence and / or opportunity 

count on predicted outcome?

2. METHODS 
2.1 Creating the “SuperBins” (Method 1) 
A quick glance at the next problem correctness (NPC) values in 
Table 1 shows that some bins are very nearly equivalent.  When 
displayed in the above format, local values vary enough to warrant 
the bins.  However, when put in order by bin values (which are 
just the mean NPC for instances falling into that category), we can 
now run a simple t-test (two tailed) analysis to compare one bin to 
the one that comes immediately after.  This gives us Table 2.

Table 2: The bins from the FGA reordered and 
showing the p-value that compares one bin to the one 
immediately below.  

Bin NPC stdev n p-value Ordinal

1 0.8156 0.3878 215,870 < 0.0001 1st

2 0.7380 0.4397 22,229 0.0055 2nd

6 0.7083 0.4545 1,958 0.5827 3rd

A 0.7012 0.4577 3,414 0.0162 4th

3 0.6771 0.4676 5,616 0.0009 5th

4 0.6380 0.4806 2,326 0.7168 6th

C 0.6321 0.4822 1,408 0.4941 7th

5 0.6211 0.4851 2,518 0.9416 8th

B 0.6192 0.4856 407 0.1339 9th

E 0.5812 0.4934 4,011 0.8154 10th

D 0.5702 0.4950 114 0.3782 11th

11 0.5250 0.4994 541 0.4851 12th

G 0.5099 0.4999 40,652 0.0781 13th

F 0.4688 0.4990 465 0.1252 14th

16 0.4118 0.4922 289 0.0141 15th

H 0.3396 0.4736 13,989 ----- 16th

In Table 2, the p-value analysis comparing the bin of that line to 
the one below it allows us to identify natural break points and 
groups.  Bins are regrouped according to these break points. That 
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is, bins are grouped together as long as two bins fail to be 
statistically different.  This gives us five “SuperBins” (Table 3). 

It may seem somewhat arbitrary to keep bins 16 and H separate 
(with a p-value of 0.0141), while grouping A and 3 together (with 
a p-value of 0.0162).  We could argue that we used a deciding 
value of 0.015, but that would be an arbitrary value.  The real 
reason for keeping 16 and H separate is that the action of using the 
bottom out hint (and using a hint as the first action) seems to be 
different than any other combination of actions and should be kept 
separate.  Throughout the rest of this analysis, we will see that the 
results of keeping this bin separate as its own SuperBin gives us 
more predictive ability.

This gives us a useful and relevant way to regroup bins that are not 
reliably different.  One can easily make the argument against the 
16 bins in FGA that, if two bins are not statistically different, why 
have them?  By combining statistically similar bins, there is more 
meaning (in prediction) to assigning a particular value for the next 
problem correctness, even if the recombination “smooths over” the
different ways that a student could arrive at a particular prediction.  

Table 3: The five “SuperBins” with their predictive 
values, and relevant statistics.  The colors are used 
consistently throughout the paper for clarity sake.
SuperBin NPC stdev n p-value

1 0.8156 0.3878 215,870 << 0.0001

2 0.7380 0.4398 22,229 << 0.0001

3 0.6902 0.4624 11,015 << 0.0001
4 0.5297 0.4991 52,731 << 0.0001

5 0.3396 0.4736 13,989 ----

If we use the colors to remake a condensed Table 1, we can see 
that the SuperBins are locally consistent within the FGA.  This is 
significant in that it suggests that, although many of the 16 bins 
from FGA may be statistically similar, these similarities (and 
differences) occur logically throughout the chart. (See Table 4.)  

Table 4: FGA color coded according to SuperBins.
Hints 1 att. 2 att. 3 att. 4 att. 5+ att.

0 Bin 1, 
0.816

Bin 2,  
0.738

Bin 3, 
0.677

Bin 4, 
0.638

Bin 5, 
0.621

1 Bin 6, 
0.708

Grp A 0.701 Grp C 0.632
Grp B 0.619 Grp D 0.570

2 Bin 11 
0.525

Grp E 0.581
Grp F 0.469

3+ Bin 16 
0.412

Grp E
Grp F

BOH
attempt 1st Grp G 0.510

hint 1st Grp H, 0.340

It is also worth noting that, although the bin numbers that went 
into the SuperBins may seem random, there is a pattern.  SuperBin 
1 consists of students who get a problem right. SB2 is populated 
by only students who made only one wrong attempt (and used no 
hints) before getting the answer right on their own.  SB3 comes 
from three bins that represent only a small number of attempts / 
hint use.  SB4, which incorporates the bulk of the FGA bins, is 
anything left, except for using the bottom-out hint, with the first 
action being hint use.  We can now use these SuperBins as the 
identifier of “wrongness”.  

In ASSISTments, a must get the right answer before moving onto 
the next question, no matter how many attempts they make or 
hints they use.  Clearly, a student who makes one wrong attempt 
and then gets the answer right with no hints demonstrates that their 
thinking was “less wrong” than a student who makes a series of 
attempts and uses many hints before getting to the correct answer.  
SuperBins give us a working definition of “wrongness”. 

2.2 Impact of previous bin; 2 SuperBin (2SB) 
combinations (Method 2)
Looking at the sequence of students “moving” through SuperBins
can help us to better understand how a student’s knowledge on a 
skill is changing.   As we look at a student’s performance on one 
skill, progression through SuperBins would indicate that the 
student’s knowledge is improving; most humans would call this 
“learning.”  Likewise, a student who gets an answer right, and 
then regresses could have “slipped” (to use KT terminology 
loosely).

The first (and simplest) method to look at the impact of previous 
SuperBins on future success is to look at two-bin combinations.  
That is, after the first problem, we will look at not just the 
SuperBin a student falls into on opportunity n, but also the 
SuperBin they were in on opportunity (n-1).  This gives 25 
different combinations.  Our naming convention is 
(current).(previous).  Thus, 2.1 is a student who is in SuperBin 2 
(used one wrong attempt before getting a problem right on the 
second try) and was in SuperBin 1 (got the problem right on the 
first attempt).  To use knowledge tracing language, 2.1 could 
represent a “slip”.  Two-SuperBin code 1.2 is a student who was 
in SuperBin 2 and has improved to SuperBin 1.  Two-SuperBin 
codes run from [(1.1-1.5) - (5.1-5.5)].

Table 6 (next page) illustrates the impact of the previous 
question’s “wrongness” on the outcome after the current question.  
For instance, if we compare the values of the 1.x family, we 
should not be surprised that the 1.1 (two correct in a row) has the 
highest probability of success on the next problem.  However, the 
four other two-bin combinations (1.2-1.5) all have (statistically 
significantly) different predictions for the next problem.  That is, 
how wrong a student was on the previous question can be an 
indicator for how likely they are to get a question right, even after 
they have gotten one right.

Perhaps the best demonstration of the importance of using a partial 
credit metric (of some sort) is to compare the predicted outcomes 
for 2.2 and 5.5.  In both cases, the students would be marked 
wrong on two consecutive problems.  However, a student who 
manages to make a mistake and then correct themselves with no 

Table 5: Meaning (in terms of attempt and hint use) and 
interpretation of “wrongness” of the five SuperBins

SuperBin Meaning “Wrongness”

1 Student got it right Right

2 Student made one wrong attempt, 
and then got it right.

Barely 
wrong

3 Student used a few attempts, and 0 
or 1 hint.

Partially 
wrong

4 Student used many attempts and/or 
hints.

Significantly 
wrong

5 Student could not start without a 
hint, and needed the answer.

Completely 
wrong
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aid (twice) is (un-surprisingly) much more likely to get the next 
problem correct than one who needs the answer given to them 
(and won’t even start without a hint).  A student in 2.2 has a nearly 
70% chance of success on the next problem, while a student in 5.5 
has a mere 16.7% chance!  Without looking at partial credit, they 
would be marked equally wrong.

2.3 Impact of opportunity count on 2SB 
combination predictions (Method 3)
The data set we are analyzing has been limited to only up to 
opportunity counts of 20.  (This was done to speed the analyses.)  
Even with 25 two-SuperBin combinations, there was enough 
information in the data set to run a linear regression on the effect 
of when a two-SuperBin combination was reached.  E.g. there is a 
difference between students who reach 1.1 (two right in a row) on 
opportunity 2 versus opportunity 20.

To create this model, pivot tables in excel were used to find the 
average next problem correctness (NPC) on two-SuperBin 
combinations that fall on particular opportunities.  Although not 

all two-SuperBin combinations were achieved on all opportunities, 
there was enough information to run a linear regression.  This, of 
course, gives an intercept and slope.  The model was applied using 
the regression, not by using the actual calculated values.

2.4 Impact of 3 SuperBin (3-SB) combinations 
(Method 4)
Just as the state of the previous SuperBin could have an effect on 
future performance, it is conceivable that the SuperBin two 
opportunities back could have an effect.  Consider the following 
two hypothetical students and their first three SuperBins:

Table 7: Two hypothetical students and 
their SuperBin values on three questions.
Student Q1 Q2 Q3 Q4
Alice SB 2 SB 1 SB 1 ?
Barney SB 5 SB 1 SB 1 ?

Intuitively, we would expect Alice to have a higher probability of 
success on question 4 than Barney.  Alice almost got the first 
question right, while Barney needed to use the bottom out hint 
(and used a hint as his first action). Although they both got 
questions 2 and 3 correct, their performances on question 1 are 
drastically different.  To user models such as KT and PFA, 
however, they were both equally “wrong” on question 1.

To identify a 3-SuperBin combination, we will use the two-
SuperBin code and add a decimal, we would have 
(current).(previous)(n-2) or [1.11-5.55]; this gives 125 three-
SuperBin combinations.  In the example above, after question 3
(and as the model predicts their correctness on question 4), Alice 
would be in 1.12, while Barney is in 1.15.

We are now looking at 125 combinations; some of these 
combinations have too few instances to have a prediction value 
that is reliable. 47 out of 125 3-SB combinations have fewer than 
100 instances; eight combinations have 10 or fewer instances.
Instead of using 125 different values (many of which would 
unreliable), we will use a linear regression to approximate values 
for the impact of the (n-2) SuperBin. However, it is a slightly 
complex process.

In order to have “smooth” regressions, some assumptions are 
made:
1.) The effects can be modelled linearly.  E.g., for the regression 

to the (n-1) SuperBin prediction = intercept + 
slope*SuperBin (n-1). 

2.) The effect of the (n-2) SuperBin value will be similar in 
pattern to the effect of SuperBin (n-1), but reduced in effect.  
(In other words, we would expect that 1.1x to follow the 
basic pattern of 1.x, but with a smaller change in values)

3.) Even though many of the three-SuperBin combinations are 
unreliable due to small numbers of instances, the average 
slope of a “family” could be used to deduce the effect size 
that is applied to the pattern found in assumption 2. 

To create the model, five regression lines (one each for 1.x, 2.x, 
3.x, 4.x, and 5.x) were created by simply using the average next 
problem correctness as the y-values and the decimal (previous 
SuperBin) as the x-values.  

Next, twenty-five regressions were run for 1.1x - 5.5x.  Although 
many of the three-SuperBin combinations were too small to be 
reliable, we used the average slope from a “family” (e.g. 1.3x) to 
adjust the effect from the two-SuperBin combination regressions.  
E.g., the regression lines for 1.1x - 1.5x were found and averaged.  

Table 6: Two SuperBin Combinations.  Code 1.x refers to 
students who are currently in SuperBin 1 and who were in 
SuperBin x on the last problem.  “Families” (1.x, 2.x, etc.) 
are color coded according to current SuperBin.  Codes 
without decimal (bolded) are values from Table 3.  The p-
values compare a 2SB to the one below it.

2SB NPC n p-value
1 0.816 215,870

1.1 0.840 121,317 < 0.0001
1.2 0.806 15,440 < 0.0001
1.3 0.775 7,085 < 0.0001
1.4 0.703 26,109 < 0.0001
1.5 0.655 4,317 -----
2 0.738 22,229

2.1 0.783 11,421 < 0.0001
2.2 0.699 2,137 0.5322
2.3 0.688 1,016 < 0.0001
2.4 0.608 2,850 0.4391
2.5 0.587 373 -----
3 0.690 11,015

3.1 0.733 4,799 < 0.0001
3.2 0.637 796 0.3058
3.3 0.611 674 0.3582
3.4 0.590 1,433 0.5120
3.5 0.567 233 ------
4 0.530 52,731

4.1 0.617 19,044 < 0.0001
4.2 0.551 2,321 0.5579
4.3 0.561 1,336 < 0.0001
4.4 0.434 15,452 < 0.0001
4.5 0.380 3,263 ------
5 0.340 13,989

5.1 0.540 2,155 0.8180
5.2 0.548 228 0.2658
5.3 0.491 165 < 0.0001
5.4 0.332 3,165 < 0.0001
5.5 0.167 4,429 -----
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To approximate the slopes of 1.1x-1.5x, the slopes of 1.x - 5.x 
were used, but multiplied by the ratio of the average (1.1x-1.5x) to 
the average (1.x - 5.x).  Since the intercepts from (1.x-5.x) might 
not have the same meaning when compared to (1.1x - 1.5x), the 
intercepts from the three-bin regressions were left as is. Table 8
(below) shows the 2-SuperBin regressions (found using the values 
in Table 6), followed by the actual regression values for one of the 
3-SuperBin families, and the idealized slopes.

2.5 First Possible Opportunity Count
Lastly, when fitting our methods (many of which would have to be 
some combination of the above four versions), we decided to 
separate SuperBins and combinations by the first available 
opportunity count, and all others.  In our numbering scheme, we 
used a “dummy code” of 09 to designate that we are looking at the 
average of NPC for only the first available opportunity count.  See 
next section for examples which may help.

2.6 Method Examples 
We now arrive at the methods by which our model is applied.  To 
see the differences between the methods, it may be useful to look 
at the same hypothetical sequence of SuperBins for two imaginary 
students and compare the different methods. (See Table 9, next 
page.) In all methods below, we compare “Chuck” and “Denise” 
and the parameters that would be used to predict their success.  It’s 
important to note that method 1 identifies the SuperBin into which 
each student is placed on questions 1-4; this does not change 
throughout the methods.

The simplest method uses only the average NPC for all SuperBins, 
and pays no attention to opportunity count or SuperBin 
combinations.  This is Method 1.  This can be thought of as a 
simplified FGA.

The prediction for (e.g.) question 5 is based solely on the 
SuperBin value for question 4.  SuperBin values are modified by a 
multinomial logistic regression based on skill.  This gives a total 
number of parameters as 5 + 1/skill.

In method 2, the prediction of NPC for question 1 is based on the 
average value for the SuperBin, but only including values from the 
first opportunities.  (The “dummy code” of 09 is used to indicate 
first opportunity only.)  All questions from then on use the value 
for the two-bin combinations.  This gives a total number of 
parameters of 30 + 1/skill.  (Five for SBx.09, and 25 for 1.1-5.5, 
plus the regression to skill)

In method 3, the prediction of NPC from question 1 is based on 
SuperBin at first opportunity, while all others are based on the 
regression to opportunity count values.  This gives a total number 
of parameters of 55 + 1/skill.  (Five for SB x.09, and 50 for the 
intercept and slope of the 25 different two-SuperBin combinations, 
plus the regression to skill)

In method 4, the prediction of NPC for question 1 and 2 are based 
on SuperBin x.09 and 2-SuperBin combinations x.y09.  For 
question 3 and on, the prediction is based on the linear regression 
to the SuperBin of (n-2).  This gives a total number of parameters 
of 65 + 1/skill.  (Five for SB x.09, 25 for 2SB combo x.y09, 25 for 
the intercepts, five for the slope of 1.x-5.x, and five for the slope 
modification parameter, plus the regression to skill).  The slope 
and intercept in the regressions in method 4 are not the same as 
those in method 3.

A demonstration of the application of all four methods can be 
found in Table 9 below. Method 1, being simply the single 
SuperBin prediction identifies a “score” or “condition” for the 
hypothetical students.  The other methods start with this 
information. 

Table 9: Hypothetical application of four different methods; it is important to note that 
the methods are different, but the results of “Chuck” and “Denise” are not. “X.09” (or 
“X.Y09”) is a code meaning prediction values are derived from the first available bin 
only.  E.g. “1.09” uses only the scores from SuperBin 1 and the first opportunity.

Method 1: SuperBin Only (“SB_1”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB1 SB2 SB1 SB1 ...

Denise SB5 SB3 SB1 SB2 ...

Method 2: Two-SuperBin combinations (“SB_2”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 2SB (2.1) 2SB (1.2) 2SB (1.1) ...

Denise SB 5.09 2SB (3.5) 2SB (1.3) 2SB (2.1) ...

Method 3: Two-SuperBin combinations, with opportunity regression (“SB_3”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 b(2.1) +m(2.1)*2 b(1.2) + m(1.2)*3 b(1.1) + m(1.1)*4 ...

Denise SB 5.09 b(3.5) +m(3.5)*2 b(1.3) + m(1.3)*3 b(2.1) + m(2.1)*4 ...

Method 4: Two-SuperBin combinations, with third bin regression (“SB_4”)

Student Q1 Q2 Q3 Q4 Q5

Chuck SB 1.09 2SB (2.109) b’(1.2) + m’(1.2)*1 b’(1.1) + m’(1.1)*2 ...

Denise SB 5.09 2SB (3.509) b’(1.3) + m’(1.3)*5 b’(2.1) + m’(2.1)*3 ...

Table 8: demonstration of 
idealization of regression to 
third bin using second bin 
regression values.
2 SB
“family”

m b

1.x -0.047 0.898
2.x -0.048 0.818
3.x -0.038 0.741
4.x -0.059 0.686
5.x -0.096 0.704

3 SB
“family”

actual

m
actual

b
actual

1.1x -0.032 0.913
1.2x -0.031 0.845
1.3x -0.025 0.089
1.4x -0.034 0.778
1.5x -0.018 0.695
3 SB
“family”

idealized

m
idealized

b
actual

1.1x -0.023 0.913
1.2x -0.023 0.845
1.3x -0.018 0.089
1.4x -0.029 0.778
1.5x -0.047 0.695

Proceedings of the 8th International Conference on Educational Data Mining 317



3. RESULTS
In order to better show methods, many of the tables that would be 
considered “results” are found throughout the paper.  We hope this 
does not inconvenience the reader too much at this time.

Tables 1 through 5 show that a statistical analysis of student 
actions (based on next problem correctness) can simplify a 
complex table, while still retaining meaningful groupings of 
student actions.  In our last paper, we argued that not only should 
hint use and attempt count be used in the model, but a simple 
action-order analysis should be included. We can point out that the 
regrouping process does not contradict this conclusion.  Had group 
A not been split from group B, the model might not have fared so 
well.

Table 6 demonstrates that there is an effect of the previous 
SuperBin that will modify the prediction of the current SuperBin.  
For example, we can see that students in SuperBin 1 who were just 
in SuperBin 5 have almost a 20% (absolute) less chance of success 
on the next problem when compared to a student who was in 
SuperBin 1 twice running.  This may not be too surprising, as 
SuperBin 1 represents getting the answer right.  However, there is 
still a roughly 15% (absolute) difference in expected outcomes 
between 2SB 1.2 and 1.5.  Both of these represent a student who 
got a problem wrong, and then got the next right.  Algorithms such 
as KT or PFA would treat these conditions as identical.

When analyzing the 2SB combinations, the pattern is amazingly 
clear: the impact of wrongness does not disappear after one 
question, and the different levels have different (and predictable) 
impacts.  Being in SuperBin 5 on the previous problem gives a 
student a worse outcome than 4; 4 is worse than 3, etc.  There are
only a few deviations from this pattern throughout Table 6.  The p-
value analysis indicates that the differences are reliable most of 
the time; that is, the patterns appear to be reliable, although a 
larger dataset is needed to state that definitively across all patterns. 

One interpretation of the pattern of effect from the previous 
SuperBin would be that students in SuperBin 5 have more to learn 
than those in SuperBin 4, and that even getting the next question 
right is not a clear sign of having learned the knowledge 
component.  The summary table (Table 5) gives another
interpretation on this: the students in SuperBin 5 needed a hint 
before they even got started, and then needed the answer to finish.  
Clearly, these students are nowhere in the same state of learning as 
a student who makes one mistake and fixes their answer on their 
own (SB2).

This differentiation of “wrongness” demonstrates the power of 
looking at non-binary correctness. Perhaps the most dramatic 
observation is that a student who is wrong twice, but corrects 
themselves each time (2SB combination 2.2) is very different from 
a student who cannot start without a hint and cannot get to the 
correct answer on their own (2SB combination 5.5).  To treat these 
two states as the same (wrong twice running) is to give up on 
information that can help differentiate a student who is nearly 70% 
likely to be correct on the next problem, verses one who as a 
paltry 16.7% chance (2.2 vs 5.5).

With these new predictions, we can compare predictions to other 
models.  In Table 10, we compare the scores from RMSE, AUC, 
and R-squared.  This shows that not only is the “SuperBin” 
method as valid as the FGA model (tying in two out of three 
metrics), taking opportunity regression (method 3) and 3-SB 
regression both improve on the basic SuperBins idea (method 1).

One table that a reader might be missing is one detailing the 
relation of 2SB to opportunity.  Rather than add an eleventh table, 
we will summarize as: the R2-values for the regressions ranged 
from 0.832 to 0.001; some are clearly not reliable.  However, 
given the results in Table 10, we think that accounting for 
opportunity count by linear regression to the 2SB combinations is 
a worthwhile first approximation.

Table 10: Analysis of various knowledge models.  
Baseline predicts the average value of the training set.  
For AUC, 1.0 is ideal; 0.5 is no better than random.
RMSE: 0.00 is ideal; 0.5 is no better than random.
R2: 1.00 is ideal, 0.0 is no better than random.
Method AUC RMSE Rsqr
Baseline (predict mean) 0.500 0.446 0.000
PFA [11] 0.653 0.426 0.058
KT [6, 4, 10] 0.710 0.413 0.115
SOA [7, 17] 0.708 0.426 0.087
AM [15] 0.714 0.422 0.103
FGA [13] 0.715 0.400 0.128
SB method 1 0.715 0.411 0.128
SB method 3 0.726 0.407 0.142
SB method 4 0.727 0.406 0.145
Avg (methods 3 & 4) 0.728 0.406 0.145

4. CONCLUSIONS
The regrouping of 16 bins of the FGA into 5 “Super Bins” does 
not adversely affect the predictive power of the model (in two out 
of three metrics). In fact, by having fewer bins, we are able to 
look at history in a way we would not have, had we kept the 16 
bins of the Fine-Grain Action model. This gives us a chance to 
improve on the FGA.

We can conclude that not all wrong answers2 are equal, and that 
there is value to be gleaned from analyzing different wrong 
answers. The impact of “how wrong” an answer is has an effect 
even up to two answers later.  That is, your “wrongness” two 
questions back can be used to make a better prediction for your 
next problem.  (It is possible that wrongness further back could be 
used, but it would require a dataset that is larger by orders of 
magnitude.)

Not only is the combination of “wrongness” useful in making 
predictions, so too is the opportunity on which a student achieves 
a combination.  That is, a student who gets the first two questions 
right is (usually) more likely to get the third right than a student 
who gets the 11th and 12th questions right is to get the 13th correct.

It is perhaps not too surprising that this method is able to 
outperform established models such as PFA and KT.  (And we 
will freely admit that the previous statement is limited only to this 
one dataset; more research is needed to definitively make this 
statement.)  PFA and KT use only the information in binary 
correctness.  A new model that outperforms existing models by 
using additional information does not negate the previous models; 
it merely shows that this information is worth incorporating into 
models of user knowledge.

2 Or, more precisely, combinations of student actions that are 
treated as wrong answers; actual analysis of wrong answers is left 
to another paper.
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4.1 Answers to the Research Questions
1.) The bins from FGA were useful, but needed to be regrouped.  
Regrouping by next problem correctness (and t-test analysis) kept 
local and logical groupings that yield meaningful descriptions of 
wrongness.

2.) The level of wrongness that a student demonstrates has an 
effect on more than just the current question.  This effect is clear 
and reliable on the next problem and may impact the following.

3.) Not all wrong answers are identical.  Knowledge estimation 
models such as KT and PFA leave out “levels” of wrongness that 
can be used to make a more accurate prediction of student success.

The paraphrased Anna Karenina quote at the start of the paper 
summarizes both our hypothesis and our findings: A careful 
analysis of wrong answers will help improve knowledge 
estimation models.

4.2 Novel Contributions
This paper seeks to show that there is information to be gained by 
treating different kinds of wrong answers as different.  Presented 
herein is a statistical method of differentiating student actions into 
groups of actions that represent meaningful differences in 
performance.  Use of these groups in a knowledge modelling 
algorithm can improve the results of the predictions, without 
needing continuous values (as in [14]). 

4.3 Future Work
Although all of the linear regressions can be considered first-order 
approximations, the idealization of the third bins may be perhaps 
only a zeroth-order.  As more data becomes available, we may be 
able to bypass the idealization and simply use 125 different 
parameters that are statistically reliable. Beyond improving the 
results of this model, the incorporation of other models that seek 
to use information from incorrect answers should bolster the 
performance of the model(s). 
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