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ABSTRACT
As adaptive tutoring systems grow increasingly popular for the 
completion of classwork and homework, it is crucial to assess the 
manner in which students are scored within these platforms. The 
majority of systems, including ASSISTments, return the binary 
correctness of a student’s first attempt at solving each problem. 
Yet for many teachers, partial credit is a valuable practice when 
common wrong answers, especially in the presence of effort, 
deserve acknowledgement. We present a grid search to analyze 
441 partial credit models within ASSISTments in an attempt to 
optimize per unit penalization weights for hints and attempts. For 
each model, algorithmically determined partial credit scores are 
used to bin problem performance, using partial credit to predict 
binary correctness on the next question. An optimal range for 
penalization is discussed and limitations are considered.    
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1. INTRODUCTION
Adaptive tutoring systems provide rich feedback and an 
interactive learning environment in which students can excel, 
while teachers maintain data-driven classrooms by using the 
systems as powerful assessment tools. Simultaneously, these 
platforms have opened the door for researchers conducting 
minimally invasive educational research at scale while offering 
new opportunities for student modeling. Still, they are commonly 
restricted to measuring performance through binary correctness on 
each problem. Arguably the most popular form of student 
modeling within computerized learning environments, Knowledge 
Tracing, is rooted in the binary correctness of each opportunity or 
problem a student experiences within a given skill [1]. Knowledge 
Tracing (KT) drives the mastery-learning component of renowned 
tutoring systems including the Cognitive Tutor series, allowing 
for real time predictions of student knowledge, skill mastery, or 
next problem correctness [4].  Similar modeling methods consider 
variables that extend beyond correctness but rarely escape the 
binary nature of the construct, including Item Response Theory 
[2] and Performance Factors Analysis [9]. By restricting input to a 

binary metric across questions, these modeling techniques fail to 
consider a continuous metric that is commonplace for many 
teachers: partial credit.   

Partial credit scoring used within adaptive tutoring systems 
could provide more individualized prediction and thus establish 
models with better fit. It is likely that binary correctness has 
remained the default for learning models due to the inherent 
difficulty of defining a universal algorithm to generalize partial 
credit scoring across platforms. Some of the onus may also fall on 
users’ familiarity with current system protocol; students tend to 
avoid using system feedback regardless of the benefits it may 
provide because requesting feedback results in score penalization. 
However, the primary goal of these platforms is generally to 
promote student learning rather than simply acting as an 
assessment tool, and thus, binary correctness is flawed. 

The present study considers data from ASSISTments, an 
online adaptive tutoring system that provides assistance and 
assessment to over 50,000 users around the world as a free service 
of Worcester Polytechnic Institute. Researchers have previously 
used ASSISTments data to modify student-modeling techniques 
in a variety of ways including student level individualization [7], 
item level individualization [8], and the sequence of student 
response attempts [3]. Previous work has also shown that naïve 
algorithms and maximum likelihood tabling methods that consider 
hints and attempts to predict next problem correctness can be 
successful in establishing partial credit models meant to 
supplement KT [10; 11].  More recently, algorithmically derived 
partial credit scoring resulted in stand-alone tabled models using 
data from only the most recent question and yet showing goodness 
of fit measures on par with KT at lower processing costs [6]. 
However, we hypothesize that some conceptualizations of partial 
credit may lead to better predictive models than others. Rather 
than subjectively defining tables or algorithms, a data driven 
approach should be considered. Thus, considering student 
performance within the ASSISTments platform, the current study 
employs a grid search on per unit penalizations of hints and 
attempts to ask: 
1. Based on penalties for hints and attempts dealt per unit, is it

possible to algorithmically define partial credit scoring that
optimizes the prediction of next problem correctness?

2. Does the optimal model of partial credit differ across
different granularities of dataset analysis?

Establishing an optimal partial credit metric within ASSISTments 
would allow teachers using the tool to more accurately assess 
student knowledge and learning, while allowing students to alter 
their approach to system usage by taking advantage of adaptive 
feedback. The optimization of partial credit scoring would also 
enhance student modeling techniques and offer a new approach to 
answering complex questions within the domain of educational 
data mining. 
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2. DATA
The ASSISTments dataset used for the present study is comprised 
solely of assignments known as Skill Builders. This type of 
assignment requires students to correctly answer three consecutive 
questions to complete the problem set. Questions are randomly 
pulled from a large pool of skill content and are typically 
presented with tutoring feedback, most commonly in the form of 
hints. The dataset has been de-identified and is available at [5] for 
further investigation. 

The dataset used in the present study is a compilation of Skill 
Builders from the 2012-2013 school year, containing data for 
866,862 solved problems. Recorded data includes students’ 
performance on the problem (i.e., binary correctness, hint count, 
attempt count), variables that identify the problem itself (i.e., 
problem type, unique problem identification number) and 
information pertaining to the assignment housing the problem 
(i.e., unique identifiers for assignments, skill type, teachers, and 
schools).  The dataset was representative of 120 unique skills and 
24,912 unique problems, solved by 20,206 students.  

On average, students made 1.53 attempts per problem (SD = 
15.08). The minimum number of attempts was 0 (i.e., a student 
who opened the problem and then left the tutor), while the 
maximum number of attempts was a daunting 12,246 (i.e., a 
student who hit ‘Enter’ repeatedly for a prolonged period of time, 
likely out of frustration or boredom). Students made a total of 
1,324,226 attempts across all problems. The majority of problems 
(74.9%) had just one logged attempt per student (typically correct 
answers), while 15.1% of problems carried only two logged 
attempts.   

Hint usage among all students averaged 0.61 hints per 
problem (SD = 1.29). The minimum number of hints used was 0 
(i.e., no feedback requested), while the maximum number of hints 
used was 10.  Interestingly, the maximum number of hints 
available for any particular problem was 7.  Thus, a handful of 
students who logged more than 7 hints were accessing the tutor in 
multiple browser windows (i.e., cheating). On average there were 
3.22 hints available per problem (SD = 0.89). The majority of 
problems contained 3 hints (44.6%), 4 hints (28.9%), or 2 hints 
(18.2%). Although there were 2,768,299 hints available across all 
problems, students only used 529,394 hints, or approximately 
19% of available feedback. Bottom out hints, or those providing 
the problem’s solution, were only used on 146,742 (16.9%) of 
problems.  

Additional analyses were performed on the 261,787 problems 
that students answered incorrectly out of the original 866,862 
problems solved. Within this subset of data, students made an 
average of 2.75 attempts per problem (SD = 27.40). Students also 
used an average of 2.02 hints (SD = 1.63). This subset of 
problems had 860,131 total hints available, of which students used 
528,644 hints (61.5%).  

Hint usage would likely increase if partial credit scoring was 
implemented within the ASSISTments platform. In many 
classrooms, binary first attempt scoring has created an 
environment in which students are afraid to use hints although 
they would benefit from feedback, as they know they will receive 
no credit. Further, the dataset suggests that once students are 
marked wrong, they are more likely to jump through all available 
hints and seek out the answer (56% of incorrect first attempts led 
to bottom out hinting). This reflects another substantial downfall 
in the system’s current protocol: once the risk has passed, so has 
the drive to learn. The implementation of partial credit scoring has 
the potential to alleviate this misuse.  

3. METHODS
The present study presents an extensive grid search of potential 
per hint and per attempt penalizations. The full dataset was used 
to define partial credit scores algorithmically based on per unit 
penalizations ranging from 0 to 1 in increments of 0.05 for both 
hints and attempts. Thus, for each solved problem in the dataset, 
441 partial credit scores were established based on each possible 
combination of per unit penalization. For example, in a model in 
which each attempt earned a penalization of 0.05, and each hint 
earned a penalization of 0.1, a student who made three attempts 
and used one hint would receive a penalty of 0.25 ((3x0.05) + 
(1x0.1)), effectively scoring 0.75 on that problem. This process 
was used to score each problem in the dataset for each possible 
penalty combination, with a floored per problem score of 0 
(students could not receive negative scores). This method was 
similar to that presented by Wang & Heffernan in the Assistance 
Model [10] which established a tabling method to calculate 
probabilities of next problem correctness based on combinations 
of hints and attempts that resulted in twelve possible bins or 
parameters. 

For each of the 441 partial credit models, a maximum 
likelihood tabling method was employed using five fold cross 
validation.  Within each model, a modulo operation was used on 
each student’s unique identification number to assign students to 
one of five folds. Note that this method resulted in folds that all 
represented approximately 20% of students in the dataset. 
Maximum likelihood probabilities for next problem correctness 
were then calculated for each partial credit score within each 
model.  Table 1 presents an average of test fold probabilities for 
the model in which each attempt and each hint are penalized 0.1. 
For instance, a student using two attempts (2 x 0.1) and one hint 
(1 x 0.1) would be penalized 0.3, thus falling into the score bin of 
0.7 (PC Score). Following through with this example, based on 
11,174 problems solved that fit this scoring structure, the average 
of known binary performance on the following problem was 
0.599. This value becomes the prediction for next problem 
correctness for students scoring 0.7 on the current problem.  

Using the maximum likelihood probabilities for next problem 
correctness within each test fold as predicted values, residuals 
were then calculated by subtracting predictions directly from 
actual next problem binary correctness (i.e., 1 – 0.725 = 0.275; 0 –
0.571 = -0.571).  This approach was used rather than selecting an 
arbitrary cutoff point to classify a prediction as correct or 
incorrect in the binary sense (i.e., values greater than or equal to 
0.6 serve as predictions of correctness) because it reduced the 
potential for researcher bias. 

Table 1. Probabilities averaged across test folds for the model 
in which the penalization per hint and per attempt is 0.1 

PC Score n Max. Likelihood NPC 
0 149,504 0.467 

0.1 422 0.571 
0.2 685 0.581 
0.3 1,055 0.578 
0.4 1,784 0.574 
0.5 3,442 0.583 
0.6 6,623 0.585 
0.7 11,174 0.599 
0.8 18,679 0.662 
0.9 49,972 0.725 
1.0 476,523 0.802 
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4. RESULTS
For each model, residuals were used to calculate RMSE, R2 & 
AUC at three levels of granularity: problem level, student level, 
and skill level. Heat maps are only presented here for RMSE, as 
the other metrics established almost identical maps. Metrics 
representing greater model fit are depicted using the purple end of 
the spectrum, while those representing poorer fit are represented 
using the red end of the spectrum. Further, a series of ANOVAs 
were conducted to compare each set of models within the same 
penalization level for attempts and hints. For example, the 21 
models in which attempt penalty was set to 0.2 were compared to 
all other sets of attempt penalty models to investigate significant 
differences across penalties. This method was used rather than 
comparing each model with all other models using paired samples 
t-tests, as the resulting 194,481 analyses (4412) would greatly 
inflate the rate of Type I error without unrealistic corrections.  

Initial analysis was performed at the problem level; residuals 
were calculated for each problem that contained next problem 
correctness metrics and goodness of fit measures were averaged 
across the dataset. Each metric followed a similar structure in 
which low attempt penalties appear to result in better fitting 
models, while hint penalty does not appear to be significant. Thus, 
partial credit scoring algorithms using lower penalties for attempts 
were better at predicting next problem performance, as depicted in 
Figure 1. The ANOVA results depicted in Table 2 suggest that 
differences in attempt penalty models were significant. Thus, the 
set of models with per attempt penalties of 0.1 differed 
significantly from the set of models with per attempt penalties of 
0.8. Differences among hint penalty models were not reliably 
significant. Figure 1 also suggests that the current binary scoring 
protocol used by ASSISTments results in predictive models that 
are inadequate. First attempt binary correctness is the equivalent 
of the model in which per attempt and per hint penalty are both 
set to 1, or the upper right corner of each heatmap). This model 
resulted in consistently poor fit metrics, suggesting that modeling 
techniques such as KT should employ continuous or binned 
partial credit values as input as they enhance next problem 
prediction ability. It has not yet been investigated how this 
alteration would change the prediction of other variables 
commonly predicted through KT, such as latent student 
knowledge or skill mastery. 

Student level analysis was undertaken using a subset of the 
original data file.  At this granularity, goodness of fit metrics were 
calculated for each student and averaged across students to obtain 
final metrics for each of the 441 models.  As the ASSISTments 
system measures completion of a Skill Builder as three 

Table 2. ANOVA results for groups of attempt and hint 
penalty models at each level of analysis 

Attempt Penalty Hint Penalty 
Level Min Max F p R2 F p R2 

Problem 
   RMSE .430 .435 302.70 .000 .935 0.95 .519 .043 
   AUC .626 .655 295.46 .000 .934 1.14 .304 .052 
   R2 .070 .091 304.34 .000 .935 0.95 .525 .043 
Student 
   RMSE .424 .429 222.49 .000 .914 1.34 .149 .060 
   AUC .578 .593 208.19 .000 .908 1.42 .106 .063 
   R2 .096 .110 374.52 .000 .947 0.80 .715 .037 
Skill 
   RMSE .423 .429 517.85 .000 .961 0.55 .944 .026 
   AUC .624 .647 250.17 .000 .923 0.72 .805 .033 
   R2 .073 .090 510.96 .000 .961 0.49 .971 .023 
Note. For all models, df = (20, 420). 

consecutive correct answers, a number of high performing 
students had limited opportunity counts within skills. For students 
with too few data points, it was not possible to calculate R2 and 
AUC. Therefore, student level analysis incorporated 7,429 
students from the original dataset, or 651,849 problem logs. 
Answering our second research question, it appears as though the 
region of optimal partial credit values observed at the problem 
level remains consistent at the student level, as shown in Figure 2. 
ANOVA results depicted in Table 2 show reliably significant 
differences across attempt penalty models but not across hint 
penalty models.   

Skill level analysis was also undertaken using a subset of the 
original data file. One skill did not have enough data based on a 
low number of users and high mastery within those users, and was 

Figure 1. Problem Level RMSE 

Figure 2. Student Level RMSE 

Figure 3. Skill Level RMSE 
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excluded from skill level analysis, resulting in a file with 119 
skills. At this granularity, goodness of fit metrics were calculated 
for each skill and averaged across all skills to obtain final metrics 
for each of the 441 models.  Results are depicted in Figure 3. The 
heat map shows that the region of optimal penalization has grown 
more concise, showing optimal fit among models with low per 
hint and per attempt penalties (< 0.3). ANOVA results depicted in 
Table 2 again suggest reliably significant differences in all metrics 
across attempt penalty models but not across hint penalty models. 

Post-hoc analyses were conducted on ANOVA results using 
multiple comparisons to examine significant differences between 
attempt penalty and hint penalty model groups when considering 
problem level AUC. Using a Bonferroni correction to reduce Type 
I error, this process resulted in a series of significance estimates 
for penalty group comparisons (i.e., all models where attempt 
penalty is 0.1 compared to all models where attempt penalty is 0.3 
results in a non-significant difference, p = 0.88). Results 
suggested that models close in penalty were less likely to differ 
significantly than models with greater difference in penalty. For 
instance, models with an attempt penalty of 0.1 were significantly 
different than those with an attempt penalty of 0.4, but were not 
significantly different than those with an attempt penalty of 0.2. 
This information can be used to help optimize partial credit 
penalizations, as it may be more motivating and productive for 
students to receive smaller penalizations. Such information could 
also allow systems like ASSISTments to define a range of 
possible penalizations that could then be refined by the teacher, 
providing all users with a greater sense of control. 

5. DISCUSSION & CONTRIBUTION
The initial findings of a grid search on partial credit penalization 
through per unit hint and attempt docking suggest that the 
implementation of partial credit within adaptive tutoring systems 
can be established using a data driven approach that will 
ultimately produce stronger predictive models of student 
performance while enhancing the way adaptive tutoring systems 
are used by students and teachers.   

Our first research question was answered with a resounding 
“Yes,” certain algorithmically derived combinations of partial 
credit penalization are better than others when used to predict next 
problem performance.  Optimal partial credit models were visible 
in heat maps spanning three levels of data granularity and 
remained relatively consistent across granularities, thus answering 
our second research question. ANOVAs revealed that differences 
in attempt penalty models were consistently significant across 
dataset granularities, while differences in hint penalty models 
were not reliable. This finding is likely due to the fact that hint 
usage is lower and less distributed than attempt count across 
problems in the dataset, and it is possible that this finding would 
diminish in a system that more readily promoted the use of 
tutoring feedback without penalization, or a system already 
employing partial credit scoring.   

The partial credit models that we define here as optimal, based 
on their ability to predict next problem performance, were models 
with per hint and per attempt penalties of 0.3 or less. Additional 
analyses revealed that at the problem level, there should be no 
reliable difference in predictive ability of a model penalizing 0.3 
per attempt from a model penalizing 0.1 per attempt, with variable 
hint penalization. This finding suggests that less penalization is 
just as effective, offering an opportunity to consider student 
motivation and affect when defining a partial credit algorithm.  
This grid search also revealed that partial credit metrics 
outperform binary metrics when predicting next problem 

performance, as previously shown in [6].  Thus, it is possible to 
improve prediction of student performance within adaptive 
tutoring systems simply by implementing partial credit scoring. It 
should also be noted that a leading limitation of the approach 
presented here is that we have only been predicting next problem 
correctness, rather than latent variables such as skill mastery or 
student knowledge. It is possible that optimizing partial credit 
would also provide benefits for the prediction of latent effects, but 
further research is necessary in this domain.  
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