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Abstract 
With the wide usage of online tutoring systems, researchers become interested in mining data from logged files of 

these systems, so as to get better understanding of students. Varieties of aspects of students’ learning have become 

focus of studies, such as modeling students’ mastery status and affects. On the other hand, Randomized 

Controlled Trial (RCT), which is an unbiased method for getting insights of education, finds its way in Intelligent 

Tutoring System. Firstly, people are curious about what kind of settings would work better. Secondly, such a 

tutoring system, with lots of students and teachers using it, provides an opportunity for building a RCT 

infrastructure underlying the system. With the increasing interest in Data mining and RCTs, the thesis focuses on 

these two aspects. In the first part, we focus on analyzing and mining data from ASSISTments, an online tutoring 

system run by a team in Worcester Polytechnic Institute. Through the data, we try to answer several questions 

from different aspects of students learning. The first question we try to answer is what matters more to student 

modeling, skill information or student information. The second question is whether it is necessary to model 

students’ learning at different opportunity count. The third question is about the benefits of using partial credit, 

rather than binary credit as measurement of students’ learning in RCTs. The fourth question focuses on the 

amount that students spent Wheel Spinning in the tutoring system. The fifth questions studies the tradeoff 

between the mastery threshold and the time spent in the tutoring system. By answering the five questions, we both 

propose machine learning methodology that can be applied in educational data mining, and present findings from 

analyzing and mining the data. In the second part, we focused on RCTs within ASSISTments. Firstly, we looked 

at a pilot study of reassessment and relearning, which suggested a better system setting to improve students’ 

robust learning. Secondly, we proposed the idea to build an infrastructure of learning within ASSISTments, which 

provides the opportunities to improve the whole educational environment. 
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ABSTRACT 

Learner modeling is a significant tool within the Educational Data 

Mining (EDM) community that can drive system implementation 

and learner analytics. Students and skills are often modeled 

together, and yet the proportion of variance attributed to each is 

typically overlooked. The present work examines how student and 

skill variance are partitioned across large-scale datasets from three 

popular learning platforms while considering four popular 

constructs for learner modeling. Results suggest that variance 

attribution is largely system and construct specific. Further, 

findings suggest that many researchers in the EDM community 

are working in an overly complex portion of the space by 

modeling next item correctness. These novel observations offer a 

strong contribution to the field. Limitations and future work are 

also discussed. 

Keywords 

Learner modeling, student variance, skill variance, ASSISTments, 

Cognitive Tutor, Andes, next item correctness, first item 

correctness, mastery speed, wheel-spinning. 

INTRODUCTION 

Learner Modeling 
Student and skill modeling are primary focuses within the 

Educational Data Mining (EDM) community that have shifted 

from tools for the development of learning technologies to 

features driving adaptive tutors in real time [9]. Learner modeling 

allows designers of educational technologies to fine-tune learning 

materials, reform skill compositions, and predict student skill 

mastery to guide adaptive content provision.  Despite persistent 

attempts to strengthen learner models, the majority of methods for 

guiding student and skill models have remained largely stagnant. 

For instance, one of the most popular forms of student modeling, 

Bayesian Knowledge Tracing (BKT), was conceived over 20 

years ago to predict skill mastery using four parameters per skill 

[8]. By considering the probability of prior knowledge alongside 

probabilities at each skill opportunity for slip, guess, and learning, 

knowledge tracing calculates the likelihood of skill mastery with a 

swift and generally accurate quaintness that has sustained the test 

of time [9]. Still, researchers have shown that individualizing 

BKT in an attempt to account for student or skill variance can 

produce more robust models with predictions that are more 

generalizable to unseen students or skills [17; 23; 24]. This leaves 

researchers questioning what portion of the variance explained by 

their models can be attributed to individualized parameters.  

Learner models are also versatile in terms of constructs of interest. 

Arguably the most common construct for the prediction of skill 

mastery, next item correctness drives models like Knowledge 

Tracing and (in a sense) Performance Factors Analysis [9]. 

However, researchers have also modeled student performance by 

predicting first item correctness, or an estimate of prior 

knowledge [6], mastery speed, or the number of skill 

opportunities required to reliably learn a skill [23], and wheel-

spinning, or a state of perpetual struggle within skill acquisition 

[4]. Numerous constructs can be considered when examining 

variance within learner models.  

Partitioning the Variance 
It is typical for modeling approaches to be compared against one-

another within the same dataset to examine effectiveness in 

predicting outcomes. However, the present work was inspired by 

a question posed by Ken Koedinger during a conference 

presentation meant to explain a model of wheel-spinning within 

ASSISTments: “What portion of the variance was due to the 

student and what portion was due to the skill?” [10]. It is true that 

learner models are often comprised of both student variance and 

skill variance, yet few researchers have taken a broad enough 

stance to examine how these sources of variance are partitioned 

within datasets [15].  Further still, no one (to the best of our 

knowledge) has yet pushed the boundary to examine trends in 

student and skill variance across systems, skill domains, modeling 

constructs, or longitudinally within systems. Just as Brahe and 

Kepler would have had far more difficulty discovering 

heliocentric orbits without the printing press that expanded access 

to astronomical tables [14], educational technologies had to reach 

a particular scale before student and skill variance could be 

compared across platforms and constructs.  

The present work seeks to partition the variance across systems 

and predictive constructs. Specifically, the following research 

questions guide this work:  

1. How much variance across systems and constructs can 

be attributed to differences between students? 

2. How much variance across systems and constructs can 

be attributed to differences between skills? 

3. Within systems, how do student and skill variability 

change over time? 

The following sections detail three popular tutoring systems that 

are commonly used for learner modeling, as well as four 

constructs that are common resources within the field. Then, 

remaining sections highlight the methods used in the present 
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work, results observed and their potential implications, limitations 

of our approach, suggestions for future work, and the overall 

contribution of this work to the EDM community.  

 

SYSTEMS & CONSTRUCTS 

Systems of Interest 
The present work highlights three tutoring systems that produce 

datasets commonly used for student modeling. These systems 

cover different domains, reach qualitatively different student 

populations, and were designed using different protocols. The 

following subsections briefly describe each system and specify the 

datasets analyzed herein. 

ASSISTments 
ASSISTments is an online learning platform focused primarily on 

middle school mathematics and used by more than 50,000 

students around the world.  The system aims to provide students 

with assistance and teachers with assessment within a variety of 

assignments mapped to the Common Core State Standards and 

popular mathematics textbooks [11].  As students work through 

classwork and homework, ASSISTments logs student 

performance that can be used to construct student models.  

The most common type of assignment within ASSISTments is the 

Skill Builder, a skill driven mastery-based problem set. Students 

must complete a series of problems randomly selected from a skill 

pool until meeting a predefined threshold for skill mastery (i.e., 

the system default requires that students accurately answer three 

consecutive problems). The ASSISTments dataset considered 

herein is comprised of all data available from Skill Builders 

spanning five academic years (2009-2014). As shown in Table 1, 

this dataset contained performance details on almost 6.5M 

problems representative of 54,570 students and 645 skills. This 

dataset was accessed by querying the ASSISTments database and 

has been made publicly available at [22]. 

Cognitive Tutor - Algebra 1  
Cognitive Tutors are a series of commercialized tutoring systems 

distributed by Carnegie Learning for students in grades 9-12 [7]. 

These systems are built around the ACT-R theory of cognition, 

allowing each system to enlist humanistic problem solving 

techniques and compare automated solution steps against student 

solutions to provide appropriate feedback and assistance [2; 18]. 

Cognitive Tutors are developed as a part of broader curriculum 

reform, with courses spanning mathematics and language domains 

[20; 7].  As students work through units and fluency challenges 

within modules, the tutor logs details on student performance 

useful for constructing student models.  

The Cognitive Tutor dataset used in the present work is composed 

of data from the Algebra 1 Course and was promoted as the 

Knowledge Discovery and Data Mining (KDD) Cup dataset in 

2010 [12]. This dataset spans two academic years (2005-2007), 

with over 2.5M problems completed by 1,857 students working 

within 445 Algebra skills (see Table 1). This dataset was retrieved 

from the PSLC DataShop [19] where it was split by academic 

year. Given its breadth, Cognitive Tutor surely houses far larger 

datasets, but they are not readily available in the PSLC DataShop.  

Andes2 Physics 
The Andes Physics tutoring system was created as a minimally 

invasive web-based homework tool for college students at the 

U.S. Naval Academy [20]. The platform was intended to 

supplement existing curriculum by replacing pencil and paper 

homework when solving physics problems. Andes provides 

feedback following each step within the derivation of a single 

problem; a far more finite granularity than the other systems 

considered herein [20]. The rule-based cognitive modeling behind 

Andes stemmed from the Cascade and Olae projects, with 

additions to incorporate immediate feedback and various types of 

tutoring assistance meant to guide students’ reasoning while 

problem solving [20]. As students work through 

Table 1. Descriptive statistics across systems years 

 
Students Skills 

Student-Skill 

Pairs 

Problem 

Logs 

Problems Per 

Student 

Problems Per 

Skill 
AS 2009-2010 2,028 104 25,263 265,821 131 2,556 

AS 2010-2011 7,317 130 89,525 931,798 127 7,168 

AS 2011-2012 14,971 131 186,352 1,815,054 121 13,855 

AS 2012-2013 15,400 139 203,271 1,624,007 105 11,684 

AS 2013-2014 14,854 141 219,024 1,824,295 123 12,938 

ASSISTments Totals/Ave 54,570 645 723,435 6,460,975 121.4 9,640.2 

CT-A 2005-2006 559 106 20,622 879,561 1,573 8,298 

CT-A 2006-2007 1,298 339 78,991 1,828,055 1,408 5,392 

Cognitive Tutor Totals/Ave 1,857 445 99,613 2,707,616 1,490.5 6,845.0 

Andes2 – Fall 2005 76 150 7,589 118,822 1,563 792 

Andes2 – Fall 2006 66 157 7,142 119,196 1,806 759 

Andes2 – Fall 2007 79 143 4,851 73,744 933 516 

Andes2 – Fall 2008 64 99 3,585 36,532 571 369 

Andes2 – Fall 2009 63 88 2,274 23,840 378 271 

Andes2 – Fall Totals/Ave 348 637 25,441 372,134 1,050.2 541.4 

Andes2 – Spring 2005 72 128 6,117 59,834 831 467 

Andes2 – Spring 2006 71 144 7,162 82,923 1,168 576 

Andes2 – Spring 2007 93 120 6,362 58,212 626 485 

Andes2 – Spring 2008 42 34 903 22,588 538 664 

Andes2 – Spring 2009 71 108 4038 38,001 535 352 

Andes2 Totals/Ave 349 534 24,582 261,558 739.6 508.8 

Note. System totals do not represent unique students or skills, as overlap is possible across years. Assumptions of independence do not apply. Averages are 

presented for total Problems Per Student and Problems Per Skill. 
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homework problems within Andes, performance details are 

primarily collected to assist professors in grading, but also prove 

useful for student modeling. 

Specifically, the dataset used in the present work was collected 

from Andes2, the second iteration of the platform, and spans five 

academic years (2005-2009). This data was retrieved from the 

PSLC DataShop [19], where it was split by academic semester. 

The full dataset included over half a million problems solved by 

650 students spanning 1,044 skills, as shown in Table 1. For the 

analyses presented herein, the academic semester split was 

retained across years as variance attributed to students differed 

greatly across semesters, suggesting wualitative differences 

between semesters. Although the Andes dataset had far fewer 

students in comparison to the ASSISTments and Cognitive Tutor 

datasets, it is included because the sample sizes were large enough 

to support the modeling approach used without over fitting the 

data. Few parameters were necessary to partition student and skill 

variance, and cross validation was employed for reliability (see 

Section 3.2). 

Constructs of Interest 
While considering the distribution of student and skill variance 

across datasets from three qualitatively different platforms, it was 

also of interest to define these distributions across numerous 

constructs that are commonly used in learner models. The 

following subsections highlight the constructs examined herein. 

First Item Correctness 
Models focused on first item correctness seek to isolate what 

students know when they first sit down to complete an 

assignment, or essentially, the prior knowledge they bring to a 

skill. Recent research has examined the prediction of first item 

correctness, or initial knowledge, within BKT to enhance the 

individualization of learner modeling [17; 6]. Models have also 

been constructed using first item correctness to examine the 

influence of prerequisite performance, or initial skill knowledge, 

on wheel-spinning [21]. Determining the knowledge a student 

brings to the table can be critical for predicting whether he or she 

will succeed in mastering a skill.  

Within the present analyses, first item correctness is traditionally 

defined as the prediction of whether or not a student will 

accurately solve the first item within a given skill. 

Next Item Correctness 
Models focused on next item correctness seek to predict what 

students will come to know as they progress through an 

assignment, or essentially, whether they ultimately learn a skill. 

Next item correctness is one of the most popular constructs in the 

field, as determining whether a student will answer the next item 

accurately is key in predicting precisely when a student will 

master a given skill. Knowledge Tracing relies largely on 

predictions of next item correctness [8], and other common 

learner models like Performance Factors Analysis consider the 

accuracy of sequential skill items in a similar nature [9].  Leaders 

within the field have long argued that predicting skill mastery or 

overall performance is impossible without tracking a student’s 

performance at item-level [2]. 

Within the present analyses, next item correctness is traditionally 

defined as a prediction of whether or not a student will accurately 

solve the next item opportunity within a given skill, considering 

their performance on previous items.  

 

 

Mastery Speed 
Models focused on mastery speed seek to gain insights from how 

quickly students learn or master a skill by considering the number 

of skill opportunities or problems that a student receives [23]. 

Some systems define skill mastery using predictive models while 

others define mastery through consecutive, n right-in-a-row, 

problems solved. In some senses, being able to predict when a 

student will master a skill, or how much additional practice would 

be necessary to reach mastery, can be as helpful as incremental 

predictions of next item correctness. 

Within the present analyses, mastery speed is defined across all 

platforms (regardless of their internal definitions of mastery) as 

accurate responses to three consecutive questions. Although this 

approach is simple, it is easy to replicate and produces results 

similar to skill mastery as defined by Knowledge Tracing (P(T) = 

0.95). Prior work has shown that within the context of 

ASSISTments Skill Builder data, similar predictions for mastery 

can be obtained from KT to those observed using the system’s 

default approach requiring correct answers on three consecutive 

skill items. Comparing predictions of next item correctness for a 

transfer item of greater difficulty, when guess rate was low (<0.1) 

and slip rate was low (<0.3), three consecutive items reached the 

95% threshold of KT [13].  Knowledge Tracing also presents an 

identifiability issue that results in models with equivalent 

statistical fit but mixed predictions of student knowledge [3]. This 

issue can be avoided by defining mastery by a series of accurate 

responses to consecutive skill items.  

Wheel-Spinning 
Models focused on wheel-spinning seek to determine whether 

struggling students will eventually master a skill, even when they 

may fail to initially master or master in a timely manner [4]. The 

mastery-based learning approach to skill acquisition that is taken 

by most Intelligent Tutoring Systems and online learning 

platforms may be too strict for students that are not capable of 

reaching proficiency, especially considering potential variation in 

content difficulty. Recent models have predicted whether or not 

students will wheel-spin by considering the student’s performance 

on prerequisite skills, or essentially, a measure of their prior 

knowledge [21]. 

Within the present analyses, wheel-spinning is defined as it was 

presented in [4]: failure to attain skill mastery following ten item 

opportunities within a given skill. 

METHODS 

Data Preprocessing 
The datasets were retrieved and the constructs were isolated, as 

described in previous sections. Datasets from all three systems 

included information that would allow for the modeling of first 

item correctness, next item correctness, mastery speed, and wheel-

spinning. Each dataset required preprocessing to format universal 

constructs for modeling. First, the data was filtered to include only 

skills with performance information from at least ten students. 

The data was then filtered to include only students that had 

worked on at least three skills. Additionally, data was filtered such 

that only student/skill pairs with at least three item opportunities 

were included. The intuition behind this filtration process was to 

 

 

 

 



5 

 

Table 2. The process for calculating student and skill covariates 

Student 

ID 

Skill 

ID 

Opportunity 

Order 
Correct 

Student 

Covariate 

Skill 

Covariate 

1 A 1 0 0.75 0.25 

1 A 2 1 0.75 0.25 

1 B 1 1 0.75 0.75 

1 B 2 1 0.75 0.75 

2 A 1 0 0.25 0.25 

2 A 2 0 0.25 0.25 

2 B 1 0 0.25 0.75 

2 B 2 1 0.25 0.75 

Note. A covariate is calculated per student given the overall average accuracy across 

skills and item opportunities (i.e., Student 1 scores 0 + 1 + 1 + 1 = 0.75). A second 

covariate is calculated per skill given average accuracy across all item opportunities 

by all students (i.e., Skill A has accuracy of 0 + 1 + 0 + 0 = 0.25). 
 

arrive at a subset of data for each system that was robust enough 

to model the proportions of skill and student variance. Rather than 

applying a complex algorithm, this simple iterative filtering 

process ensured enough data for each skill and for each student. 

Further, within the ASSISTments dataset, tutoring problems (i.e., 

Scaffolds) were excluded as to only retain primary skill item 

opportunities. This issue was not apparent in the Cognitive Tutor 

or Andes2 datasets. All resulting datasets and the filtration code 

are available at [22] for further reference.  

Following filtration, it was necessary to develop weighted 

covariates for student and skill to help partition the variance 

attributed to each predictor. These covariates were calculated 

using identifiers for the student and the skill, the number of items 

and their opportunity order, and the item’s accuracy, as shown in 

Table 2. To process the student covariate, accuracy was averaged 

across all problems that the student answered, regardless of skill. 

For example, in Table 2, Student 1 answered four items spanning 

two skills, with an average overall accuracy of 0.75. Student 2 

also answered four items spanning two skills, but her average 

accuracy was 0.25. The student covariate provides insight into 

overall student performance, regardless of skill, or essentially a 

student-level characteristic inherent to ability. To process the skill 

covariate, a similar approach was taken using skill as the unit of 

analysis. For example, in Table 2, both students solved two items 

pertaining to Skill A. Looking across students, the average 

accuracy on Skill A items was 0.25. Both students also solved two 

items pertaining to Skill B, which carried an average accuracy of 

0.75. The skill covariate provides insight into overall skill 

difficulty, as experienced by all students.  

Modeling Approach 
The modeling approach presented herein is simple in nature, with 

a focus on how student and skill variance are partitioned across 

systems and constructs. Linear or Logistic Regression models 

were constructed (for continuous and binary constructs, 

respectively) to predict the constructs of interest while examining 

R2 as a core metric for variance explained. For example, as shown 

in the logit equation (2) and resulting probability equation (3) 

below, a Logistic Regression model was built to predict the 

probability of next item correctness (Y), with student and skill 

covariates (X) as independent variables. 
 

Linear Regression: 

�̂� = 𝛼 +  𝛽𝑋                                               (1) 

Logistic Regression: 

𝑙𝑜𝑔𝑖𝑡(𝑌) = ln (
𝜋

1−𝜋
) =  𝛼 +  𝛽𝑋                          (2) 

               𝑃𝑟𝑜𝑏𝑌 =  
𝑒𝛼+ 𝛽𝑥

1+𝑒𝛼+ 𝛽𝑥                                        (3) 

Table 3. Correlations of constructs across systems 

 First Item Next Item Mastery Speed Wheel-Spinning 

ASSISTments     

    First Item 1.0    

    Next Item 0.28 1.0   

    Mastery Speed -0.43 -0.33 1.0  

    Wheel-Spinning -0.29 -0.32 0.78 1.0 

Cognitive Tutor      

    First Item 1.0    

    Next Item 0.17 1.0   

    Mastery Speed -0.46 -0.22 1.0  

    Wheel-Spinning -0.28 -0.22 0.79 1.0 

Andes2 - Fall     

    First Item 1.0    

    Next Item 0.27 1.0   

    Mastery Speed -0.45 -0.21 1.0  

    Wheel-Spinning -0.32 -0.31 0.73 1.0 

Andes2 - Spring     

    First Item 1.0    

    Next Item 0.27 1.0   

    Mastery Speed -0.46 -0.24 1.0  

    Wheel-Spinning -0.31 -0.30 0.71 1.0 

 

The model also included inherent error, 𝛼. This model was run 

once while considering only the student covariate, again while 

considering only the skill covariate, and a final time considering 

the compound effect of student + skill. Through this approach, 

resulting R2 values can be interpreted as variance explained by the 

variable(s) included in each model.  Within the iterations of 

Linear and Logistic Regression models, and regardless of the 

covariate or construct being modeled, ten-fold cross validation 

based on student-skill pairs was used to promote robust outcomes. 

These models were not designed to examine the error inherent to 

resulting predictions, but simply to gauge the overall variance 

explained by variables within the model. 

RESULTS 

Correlations of Constructs 
Prior to running the necessary Linear and Logistic Regressions 

across systems and constructs, it was first of interest to briefly 

examine the correlations between constructs within systems. 

Correlations are presented in Table 3, showing relatively stable 

trends in the relationships between constructs across platforms. 

The values presented are the average of Pearson’s r correlations 

collected from each academic year within each system (e.g., 5 

years for ASSISTments, 2 years for Cognitive Tutor, and 5 years 

split by semester for Andes2). In order to collect these 

correlations, first item correctness, mastery speed, and wheel-

spinning (logged at the level of student/skill pairs) were replicated 

across each item as necessary, such that the number of items 

represented, n, was stable across constructs. While most 

correlations were mild (all were significant prior to averaging 

across years), mastery speed and wheel-spinning maintained a 

strong positive correlation across platforms, suggesting that the 

nature of this relationship is linked to how these constructs are 

defined. Given this strong correlation, variance explained should 

look similar within these constructs across systems.   

Variance Explained  
After examining correlations amongst constructs within systems, 

the Linear and Logistic Regressions were modeled with cross-

validation employed.  Immediate results were intriguing, as to our 

knowledge, partitioning the variance within learner models across 

systems and constructs is a novel task.  
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Table 4. Variance explained (R2) by Student, Skill, and Student + Skill across systems and constructs 

  Student  Skill  Student + Skill 

 FI NI MS WS Ave  FI NI MS WS Ave  FI NI MS WS Ave 

ASSISTments 0.17 0.10 0.19 0.18 0.16  0.08 0.04 0.09 0.05 0.07  0.25 0.14 0.27 0.25 0.23 

Cognitive Tutor  0.07 0.04 0.10 0.09 0.08  0.19 0.11 0.17 0.16 0.16  0.25 0.15 0.27 0.26 0.23 

Andes2 - Fall 0.11 0.09 0.10* 0.17* 0.12 

(0.10) 

 0.20 0.11 0.30* 0.22* 0.21 

(0.16) 

 0.31 0.20 0.37* 0.41* 0.32 

(0.26) 

Andes2 - Spring 0.17 0.14 0.16* 0.24* 0.18 

(0.16) 

 0.13 0.06 0.26* 0.15* 0.15 

(0.10) 

 0.30 0.19 0.41* 0.41* 0.33 

(0.25) 

Average 0.13 0.09 0.14 

(0.15) 

0.17 

(0.14) 

  0.15 0.08 0.21 

(0.13) 

0.15 

(0.11) 

  0.28 0.17 0.33 

(0.27) 

0.33 

(0.26) 

 

Note. FI = First Item Correctness, NI = Next Item Correctness, MS = Mastery Speed, WS = Wheel-Spinning. Averages are provided for each system across 
constructs, and for each construct across systems. *As Andes2 was found to be a qualitatively different system in which measures of mastery speed and 

wheel-spinning were less reliable, averages are corrected to include only ASSISTments and Cognitive Tutor and presented in parentheses.    
 

Student Variance  
The proportion of variance in each model that could be attributed 

to students differed considerably across systems and constructs.  

Results are depicted in the Student section of Table 4. Further 

investigation shows that when modeling first item correctness, 

student characteristics explained anywhere from 7% to 17% of 

variance in models across systems (M = 0.13, SD = 0.05). 

Considering next item correctness, student characteristics 

explained between 4% and 14% of variance in models across 

systems (M = 0.09, SD = 0.04). When examining mastery speed, 

between 10% and 19% of variance in models across systems was 

attributed to students (M = 0.14, SD = 0.05). Finally, wheel-

spinning was more reliant on student characteristics yet showed 

greater variability across systems, with between 9% and 24% of 

variance attributed to students (M = 0.17, SD = 0.06). 

Skill Variance 
The proportion of variance in each model that could be attributed 

to skills also differed considerably across systems and constructs.  

Results are depicted in the Skill section of Table 4. When 

modeling first item correctness, skill explained anywhere from 

8% to 20% of variance in models across systems (M = 0.15, SD = 

0.06). When examining next item correctness, skill showed less 

variability across systems, explaining between 4% and 11% of the 

variance in models (M = 0.08, SD = 0.04). Alternatively, skill was 

exceptionally variable when examining mastery speed, explaining 

between 9% and 30% of variance in models across systems (M = 

0.21, SD = 0.14). The variance explained by skill was also highly 

variable in wheel-spinning, with between 5% and 22% of variance 

attributed to skill (M = 0.15, SD = 0.07). 

Student + Skill Variance 
Briefly examining the compound effects of student and skill, 

variance explained was not always strictly summative when these 

covariates were modeled together. Referring to Table 4, within 

ASSISTments, student explained 10% of the variance when used 

to model next item correctness alone, while skill explained 4% of 

the variance when used to model the same construct alone. When 

taken together, student and skill did come together in perfect 

summation to explained 14% of the variance in the model. 

However, when modeling the construct of wheel-spinning within 

Andes2 - Spring, student alone explained 24% of the variance and 

skill alone explained 15% of the variance, and yet together they 

explain 41% of the variance in the model (gaining strength by 2%, 

perhaps through a moderating latent construct).  

Findings Across Systems 
Overall, student and skill were equally informative in terms of 

average variance explained. However, trends in the attribution of 

variance were impressively different across constructs and 

systems. Considering averages across constructs but within 

systems is perhaps more crucial to the field. On average within 

ASSISTments, a greater proportion of variance was attributed to 

student (M = 0.16, SD = 0.04), while skill was about half as 

powerful in terms of variance explained (M = 0.07, SD = 0.02).  

The Cognitive Tutor data actually showed the reverse. On 

average, a greater proportion of variance was attributed to skill (M 

= 0.16, SD = 0.03), while student was about half as powerful in 

terms of variance explained (M = 0.08, SD = 0.03). Oddly, this 

flip also occurred within the Andes2 system, with skill claiming a 

greater portion of the variance explained on average in the Fall (M 

= 0.21, SD = 0.08), and student explaining a greater proportion of 

the variance explained on average in the Spring (M= 0.18, SD = 

0.04).  

Findings Across Constructs 
Across constructs, next item correctness is perhaps the most 

popular for learner models and yet appeared to be the most 

difficult to predict. While student and skill were fairly well 

balanced in importance, only 9% of the variance (on average) in 

next item correctness was explained by student, and only an 

additional 8% (on average) was explained by skill. Other 

constructs carried more accurate predictions.  Models of first item 

correctness attributed 13% of variance to student and 15% to skill, 

while models of mastery speed and wheel-spinning also carried 

high proportions of variance explained by both student and skill, 

as shown in Table 4.  Skill held more variance in these constructs, 

suggesting they may also provide avenues for driving instructional 

interventions to improve modeling outcomes through curriculum 

design. 

A Deeper Look into Andes2 
Additional tests were run to examine why Andes2 (Fall and 

Spring) resulted in impressively different R2 values for the 

constructs of mastery speed and wheel-spinning, as shown in 

Table 4. It was thought that perhaps the issue was linked to the 

definition of mastery used here (i.e., accurate responses on three 

consecutive skill items). As such, the percentage of students 

reaching mastery within 15 attempts was graphed in Figure 1, a 

classic wheel-spinning curve. Results suggested that students 

within Andes2 were only mastering at chance levels by 10 

attempts (i.e., 52% mastery in the Fall, 46% mastery in the 

Spring). In comparison, 80% of students within ASSISTments and 

75% of students within Cognitive Tutor were mastering by the 

10th attempt.  

In an attempt to reduce the mastery skew effecting Andes2, the 

threshold for mastery was lowered to require accurate responses 

on only two consecutive skill items.  As shown in Figure 2, 

although  gains  in  mastery  were  observed  across  systems,  the  
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Figure 1. Trends in the percentage of students that master 

when mastery is defined as 3 consecutive correct responses 

 

 

Figure 2. Trends in the percentage of students that master 

when mastery is defined as 2 consecutive correct responses 

 

 

 

percentage of mastery for students working within Andes2 (Fall 

or Spring) was still below 70%. As it was not logical to reduce the 

requirement for mastery to accuracy on a single item, Andes2 was 

simply labeled as a qualitatively different system and it was 

redacted from amended analyses for mastery speed and wheel-

spinning. As such, both original and adjusted averages for these 

constructs and for the Andes2 system(s) are presented in Table 4. 

Variability in Variance Over Time 
The final research question guiding the present work was to 

examine the variability of student and skill variance within 

systems over time. The longitudinal trends shown in Table 5 are 

novel in that (to the best of our knowledge) variance for these 

systems has never been examined longitudinally at such a fine 

granularity. Findings suggest that the variance explained by 

models tailored to correctness metrics varies widely across 

systems, proportional to the distance from predictions of chance 

accuracy (50% correctness).  

On average, most constructs actually grow more difficult to model 

in both ASSISTments and Cognitive Tutor with each passing 

year. For instance, when modeling next item correctness in 

ASSISTments, researchers were able to explain 16% of the 

variance using both student and skill variables in the 2009-2010 

academic year, but this value dropped to only 10% explained in 

2013-2014. Similar trends exist for models predicting first item 

correctness (dropping 11%), for models predicting mastery speed 

(dropping 5%), and for models predicting wheel-spinning 

(dropping 12%). Specifically, drops in variance explained could 

be largely attributed to student across constructs, as shown in 

Table 5. Although trends were flipped for Cognitive Tutor, in that 

more variance could be attributed to skill than to student, the 

longitudinal decline remains.  For both systems, the data suggests 

that something within system modernization has made learner 

modeling more difficult.  

Despite discovering potential issues with using the Andes2 

datasets for traditional learner modeling, longitudinal data for 

both semesters is presented in Table 5 for reference.  The system 

showed no clear longitudinal trends in the variability of student or 

skill variance across constructs. 

 

Table 5. Longitudinal trends of variance explained (R2) by Student, Skill, and Student + Skill across systems and constructs 

 Student  Skill  Student + Skill 

 FI NI MS WS   FI NI MS WS   FI NI MS WS 

AS 2009-2010 0.22 0.13 0.22 0.25  0.11 0.05 0.10 0.06  0.32 0.16 0.30 0.32 

AS 2010-2011 0.17 0.11 0.19 0.18  0.09 0.05 0.10 0.06  0.25 0.15 0.28 0.28 

AS 2011-2012 0.17 0.13 0.19 0.19  0.07 0.04 0.08 0.05  0.23 0.16 0.27 0.25 

AS 2012-2013 0.14 0.08 0.17 0.15  0.08 0.04 0.09 0.05  0.21 0.11 0.25 0.21 

AS 2013-2014 0.14 0.07 0.17 0.13  0.08 0.04 0.09 0.05  0.21 0.10 0.25 0.20 

CAT 2005-2006 0.08 0.04 0.13 0.10  0.18 0.12 0.14 0.19  0.26 0.17 0.27 0.30 

CAT 2006-2007 0.05 0.03 0.08 0.07  0.19 0.09 0.19 0.13  0.24 0.14 0.26 0.21 

ANDES Fall 2005 0.06 0.03 0.06 0.07  0.19 0.06 0.27 0.13  0.25 0.09 0.32 0.22 

ANDES Fall 2006 0.11 0.08 0.10 0.17  0.17 0.07 0.24 0.13  0.28 0.15 0.32 0.34 

ANDES Fall 2007 0.15 0.14 0.13 0.22  0.19 0.13 0.26 0.26  0.33 0.27 0.34 0.47 

ANDES Fall 2008 0.09 0.11 0.10 0.20  0.26 0.15 0.44 0.36  0.34 0.25 0.50 0.54 

ANDES Fall 2009 0.16 0.10 0.13 0.21  0.21 0.13 0.27 0.24  0.36 0.23 0.38 0.46 

ANDES Spring 2005 0.08 0.05 0.08 0.09  0.14 0.07 0.24 0.11  0.22 0.12 0.30 0.21 

ANDES Spring 2006 0.16 0.12 0.14 0.20  0.14 0.05 0.26 0.13  0.29 0.17 0.37 0.34 

ANDES Spring 2007 0.26 0.23 0.24 0.39  0.11 0.06 0.26 0.19  0.36 0.27 0.41 0.53 

ANDES Spring 2008 0.16 0.11 0.23 0.32  0.20 0.08 0.48 0.28  0.33 0.17 0.56 0.55 

ANDES Spring 2009 0.18 0.17 0.17 0.29  0.12 0.06 0.27 0.18  0.30 0.21 0.38 0.44 

Note. FI = First Item Correctness, NI = Next Item Correctness, MS = Mastery Speed, WS = Wheel-Spinning. Values for mastery speed and wheel-spinning 
within Andes2 are shaded to remind readers that this system was found to be qualitatively different than ASSISTments and Cognitive Tutor, and as such, 

these values may carry less reliability. 
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DISCUSSION 
Much like Brahe and Kepler discovering errors in planetary orbits 

via side-by-side astronomical charts [14], the present results 

revealed potential errors in the focus of the Educational Data 

Mining community via side-by-side learner models. The trends 

observed for next item correctness (e.g., a construct that explains 

minimal variance in models, that has decreased in power 

longitudinally within systems, and in which attribution to student 

or skill is heavily system dependent) suggest that researchers in 

the field are putting the majority of their focus in an overly 

complex portion of the space that may not reveal as much about 

student achievement and skill mastery as other constructs.  

The present work sought to determine the proportion of variance 

attributed to students and skills when looking across systems and 

constructs. Findings suggested that across systems and constructs, 

between 4% and 24% of variance could be attributed to student 

(without corrections for Andes2, M = 0.13, SD = 0.03), and 

between 4% and 30% of variance could be attributed to skill 

(without corrections, M = 0.15, SD = 0.05). When not considering 

Andes2 due to its qualitative differences as a system, student 

variance in ASSISTments and Cognitive Tutor ranged from 4% to 

19% (M = 0.12, SD = 0.04) and skill variance also ranged from 

4% to 19% (M = 0.12, SD = 0.03).  Further, when looking over 

time, trends were observed in the variability of student and skill 

variance for constructs and systems. Findings suggested that 

learner models are highly sensitive to the system, dataset, and 

construct being modeled, with different systems and constructs 

resulting in different trends.   

The systems considered herein were chosen for their popularity 

within the EDM community. ASSISTments and Cognitive Tutor, 

systems producing some of the most mined datasets, actually 

appear to behave very differently. Across constructs, student was 

more valuable when modeling ASSISTments data, while skill was 

more valuable when modeling Cognitive Tutor data. These 

extremes in the attribution of variance suggest that learner models 

treating these systems as equivalents may not be appropriate, as 

results will look similar on average but the observed effects may 

be attributed to very different causes.  

The set of constructs examined herein was also chosen to address 

useful issues within the field of EDM. The goal of this work was 

to promote the importance of modeling a broad range of 

constructs, extending the field’s vocabulary beyond next item 

correctness. Further, little focus has fallen on comparing learner 

models across systems [5]. Results from the present work suggest 

that this approach is critical for understanding the implications of 

learner modeling from a broader perspective.  

When questioning why differences in variance attribution were 

observed, a few potential causes can be hypothesized. It is 

possible that skills were poor predictors in ASSISTments due to 

greater variance in the population of student users (i.e., perhaps 

students bring a greater range of preparation, knowledge, and 

behavior). The apparent lack of predictive ability in comparison to 

Cognitive Tutor may also be due to the fact that skills and specific 

knowledge components have much more variability, spanning 

grades and mathematics domains while Cognitive Tutor is limited 

to Algebra 1 components. It is also possible that the issues 

inherent to skill-based learner modeling in ASSISTments can be 

linked to the tagging of knowledge components or to errors in the 

skill structure itself, although this structure is continuously revised 

for accuracy through research into prerequisite skills [1]. Still, it is 

also possible to turn the tables and ask why student was a poor 

predictor within Cognitive Tutor. It is possible that the student 

population using Cognitive Tutor to practice Algebra, especially 

within the restricted data made available through the PSLC 

DataShop [19] was more homogenous in preparation, ability, and 

behavior. Cognitive Tutor is presented to students as part of an 

entire curriculum [18; 20] and is limited to a single mathematics 

domain.  

Not surprisingly, middle school mathematics is qualitatively 

different than introductory college physics, as confirmed by the 

difficulty in modeling constructs within Andes2. These systems 

carry similar knowledge components or skills, but are driven by 

very different instructional objectives. Middle school mathematics 

is repetitious, requiring students to practice skills multiple times 

and offering a clear depiction of learning (i.e., through learning 

curves). In comparison, physics is far more granular, with 

knowledge components that correspond to smaller steps within 

complex problem solving. Students solving physics problems 

experience less repetition in specific skill practice, making it more 

difficult to model when learning has occurred by considering 

student or skill.  

A touch of clairvoyance into the future of EDM would suggest 

that the future of learner modeling will likely look more like the 

trends observed within ASSISTments, as the platform more 

closely resembles material from a Massive Open Online Course. 

These platforms have broader and more loosely defined skills, 

where students are not constrained to a fixed curriculum and may 

access lessons at will, as shown by work that has already 

investigated the application of knowledge tracing to MOOCs [16].  

As the field progresses, learner models should be developed 

cautiously, explained within their context, and presented within a 

broader perspective of implications.  

LIMITATIONS & FUTURE WORK 
The present work is not without limitation. First and foremost, 

while three systems and four constructs were considered to 

examine how student and skill variance are partitioned within 

learner models, there are certainly many other systems and 

constructs that have not been considered. Future work should be 

considered to extend the findings presented here across additional 

systems, perhaps to include MOOCs and datasets that have not 

been primed for presentation in the PSLC DataShop [19]. There 

are also a number of constructs that are of interest to the greater 

EDM community that are not considered in the present work (e.g., 

student affect, or other student, class, and school level 

characteristics like gender, class size, and urbanicity). Future 

work should investigate variance attributions across more 

complex constructs of this nature.   

Another limiting factor of this work is the validity of the datasets 

considered herein. While the authors had control over the query 

and preprocessing necessary for the ASSISTments dataset, less is 

known about the steps that established datasets retrieved from the 

PSLC DataShop [19]. Specifically, the Cognitive Tutor Algebra 

dataset was promoted for the specific purpose of the KDD Cup 

[12], a data mining challenge focused on specific predictors and 

outcomes. Thus, it is possible that the dataset was cleaned in a 

manner to best suit the needs of data miners with particular goals, 

which may have led to some of the trends in student and skill 

variance observed between systems.   

Additionally, model-fitting procedures have the capacity to 

influence the results observed, and while measures were taken to 

produce valid and reliable results, it is possible that our approach 

had room for error. Other approaches to partitioning the variance 

within learner models may result in slightly different outcomes.  
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CONTRIBUTIONS 
The present work offers a novel contribution to the 

Educational Data Mining community in the form of a cross 

platform comparison of student and skill variance attributions 

within learner models predicting first item correctness, next 

item correctness, mastery speed, and wheel-spinning. This 

work revealed that much of the field has been focusing on a 

complex and potentially impractical area in learner modeling 

– next item correctness. Student characteristics are less 

helpful in predicting this construct, but may be more practical 

in predicting other, less sensitive constructs. Further, it 

revealed that variance in some of the most frequently mined 

datasets can be system and construct specific, and as such, 

that broad claims about the generalization of particular 

learner models should be made with caution.  
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ABSTRACT 

Rich features can be exploited to better model student 

performance when predicting next problem correctness 

(NPC) within intelligent tutoring systems. Yet these 

features may differ significantly in availability and 

importance when considering opportunity count (OC), or 

the number of problems experienced within a skill or 

knowledge component. Inspired by such intuition, the 

present study examines the Opportunity Count Model 

(OCM), a unique approach to student modeling in which 

separate models are built for differing OCs rather than 

creating a blanket model to encompass all OCs. Random 

Forest (RF) is used to establish iterations of the OCM by 

considering rich features within logged tutor data.  Model 

strength is then tested against standard Knowledge Tracing.  

Results suggest that prediction of next problem correctness 

is improved through the OCM approach for lower OCs, and 

applying different modeling techniques at different phase of 

students’ practice would be plausible. Also, feature 

variation among OCs justifies our proposal to build OCM. 

Author Keywords 

Random Forest; Opportunity Count; Student Modeling; 

Next Problem Correctness; Intelligent Tutoring System; 

Knowledge Tracing 

 

ACM Classification Keywords 

I.6.5. Simulation and modeling: Model Development; J.1. 

Administrative data processing; K.3.0. Computers and 

education: General. 

INTRODUCTION 
Since its creation, Knowledge Tracing (KT) [3] has played 

a critical role in the intelligent tutoring system (ITS) 

community for its use in modeling student knowledge and 

performance. Although it has shown high prediction 

accuracy, KT overlooks the rich features that are common 

to many ITSs, such as response time and hint usage. A 

variety of rich features are easily obtained by data mining 

the log files of these systems, and as research has shown, 

these features can be exploited to improve student modeling 

[4,5,8,9,11]. Specifically, González-Brenes et.al. presented 

a general method for making use of rich features via 

dynamic Bayesian Networks, thereby compensating for the 

limitations of KT [5].  In contrast, Wang and Heffernan 

[11] established a maximum likelihood tabling method 

termed the “Assistance” Model, which considered a 

student’s hint and attempt usage to better predict 

performance. Although this model did not outperform KT, 

ensembling the two models proved beneficial. Research by 

Duong, Zhu, Wang and Heffernan [4] considered action 

sequences in the prediction of next problem correctness, 

enhancing prediction accuracy over KT.  Other feature 

based methods that have proven successful include 

Performance Factors Analysis [9], which applies logistic 

regression to a compounding record of correct and incorrect 

problem responses in order to predict next problem 

correctness, and a Random Forest approach by Pardos & 

Heffernan [8] that examined the significance of numerous 

rich features in modeling student performance. 

Despite the fact that rich features have been shown to 

enhance student modeling, little focus has been given to the 

critical significance of opportunity count (OC), or the 

compounded sequence of skill or knowledge component 

opportunities within a student’s learning experience.  It 

seems intuitive that the availability and importance of rich 

features within logged data can vary based on opportunity 

count: different features hold significance for a student on 

her third opportunity than those important for a student on 

her seventh opportunity.  It may be possible to reduce the 

noise inherent to low OCs (i.e., the initial parameters used 

in KT are more critical to prediction when OCs are low) by 

establishing flexible models that consider opportunity count 

alongside rich features.  

The present study investigates the significance of 

opportunity count when establishing student models using 

rich features. We propose building separate models for 

differing OCs by using a Random Forest approach to 

determine fluctuations in the importance of rich features 
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OC Student Skill Correct Attempts FRT (ms) H Used H Total FA 

1 34 102 1 1 30230 0 2 0 

2 34 102 1 1 23432 0 3 0 

3 34 102 0 2 32363 1 2 1 

4 34 102 1 1 25465 0 2 0 

1 56 102 0 1 15201 0 1 2 

Table 1. Sample Data 

across a dataset stratified by OC. Random Forest, 

introduced by Leo Breiman, is a proven method for making 

predictions based on a variety of features [2]. The method 

trains regression trees based on decision splits made from a 

random subset of data features.  The resulting output offers 

a prediction model based on an ensemble of regression 

trees. This method also succinctly defines the degree of 

feature importance within a model, as measured by out-of-

bag error [10].  

The Opportunity Count Model proposed here examines the 

potential flexibility of student modeling when considering 

opportunity count and rich features inherent to intelligent 

tutoring systems.  We seek to answer the following research 

questions: 

1. Can the accuracy of models predicting next problem 

correctness be enhanced by establishing separate models for 

differing opportunity counts when considering rich 

features? 

2. Is there variation of feature importance among different 

OCs? 

DATASET 

The current study examines flexible OC modeling using a 

dataset comprised of student data logged between 

September 2012 and August 2013 within ASSISTments, an 

intelligent tutoring system with a primary focus on 

mathematics content [6].  The log files used in the present 

study originated solely from Skill Builders, a type of 

problem set unique to ASSISTments in which students must 

correctly solve three (by default setting) consecutive 

problems on a skill in order to complete or ‘master’ their 

assignment.  Problems are randomly assigned from a large 

pool of skill content to reduce the likelihood of cheating. 

For each problem, students are provided correctness feed-

back along with hints or scaffolding problems that act as 

tutoring strategies to deter students from getting stuck 

within the assignment. Hints are provided upon the 

student’s request, while scaffolding problems are presented 

automatically when an incorrect answer is entered, or upon 

the student’s request.  A series of hints offers assistance that 

grows increasingly specific, until ultimately providing 

students with the correct answer (i.e., the ‘Bottom Out 

Hint’).  Alternatively, scaffolding problems are used to 

provide worked examples or to break a problem down into 

steps as a guide for problem solving. A detailed log is kept 

for each problem with regard to student actions, including 

answers, attempt count, hint requests, and scaffold usage. 

Students are not able to skip problems within the problem 

set, and must answer a problem correctly or arrive at the 

Bottom Out Hint before moving on to the next problem.  

Thus, Skill Builders offer the unique opportunity to 

investigate opportunity count within differing skills in a 

mastery-learning environment.  

The dataset used in the present study only included 

information logged for main problems.  Thus, scaffolding 

problems were excluded from analysis as they carry a high 

probability of student accuracy based on their nature. 

Further, ASSISTments Skill Builders can include problems 

with a variety of problem types including ‘Fill-In,’ where 

the student must answer an exact answer,  ‘Algebra,’ where 

the student can enter any mathematically equivalent answer, 

and ‘Multiple Choice’ in which students must select an 

answer from a range of possible solutions.  Skill Builder 

problem sets employing Multiple Choice problems were 

excluded from the present study due to their 

disproportionate ease and the potential for correct guessing.  

Additionally, Skill Builders with less than 1000 logged 

problems were excluded from analysis.  Following all 

exclusions, the resulting dataset contained details for 

85,862 problems logged by 3,210 unique students spanning 

70 unique skills. 

An abbreviated version of the logged data is presented in 

Table 1, displaying only the information pertinent to feature 

generation. The full dataset, including all logged data, can 

be accessed here.  Within the sample data in Table 1, each 

row represents a problem logged for one student at a 

specific opportunity to practice the skill.  A binary score is 

logged for each problem, along with an attempt count, the 

student’s first response time (in milliseconds), the number 

of hints used, the number of hints available per problem, 

and the student’s first action on the problem.  For instance, 

the first row represents student 34’s first opportunity on 

skill 102.  The student answered the problem correctly in 

one attempt without the use of hints. 

While a value of 1 in this column signifies that the student 

answered the problem correctly without assistance, a value 

of 0 may signify an incorrect first attempt or an immediate 

request for assistance from hints or scaffolding.  First 

response time represents the duration of time in 

https://drive.google.com/folderview?id=0B5Nb7T9qsMmHUTJXOVdmTmdZY0U&usp=drive_web
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milliseconds from when a problem is started to the first 

logged action. As shown in Table 1, first action can include 

an attempt at answering the problem (0), a hint request (1), 

or a scaffolding request (2).  

 

Figure 1. Number of Cases for Differing OCs. 

As previously noted, Skill Builders require three correct 

consecutive answers for skill mastery.  Thus, high 

performing students are likely to have minimal OCs within 

a skill, while struggling students are likely to have higher 

OCs within a skill.  As OC increases, data points grow 

scarcer as students master (or fail to master) the skill.  

Figure 1 depicts this trend for OCs within the dataset. For 

example, there were approximately 12,000 cases of students 

experiencing three OCs for a skill, but only about 7,000 

cases of students reaching five OCs for a skill. It should 

also be noted that Skill Builder problem sets carry a daily 

limit, or a preset number of problems that a student can 

attempt in one day.  By default, the daily limit is set to ten 

problems. If a student exceeds the daily limit prior to 

correctly solving three consecutive problems, the problem 

set is effectively locked until the next day and the student is 

told to consult with her teacher. Therefore, it might be less 

accurate to make predictions for OC’s greater than ten. 

METHODS 

Feature Generation and Organization 

In order to apply RF to build prediction models, it was first 

necessary to modify the original data set by generating new 

features. The first generated feature combined original data 

for hints used and total hints available to establish the 

percentage of hints used at each OC.  As different problems 

carry different hint totals, percentage of hints used offers a 

better understanding of student performance across 

problems. Next, first response times were groomed to 

remove outliers that are larger than 400ms (less than 1% of 

the problems logged were removed in this process) and to 

simplify the time structure to 10 second increments.  We 

felt that it was unnecessary for time to be measured with 

such precision and as RF prefers discretized data, this 

binning process would help to avoid excess node splitting 

without much information loss. Additionally, a feature 

called ‘historical accuracy’ was generated to track a 

student’s percentage of correctness across all prior OCs 

within a skill.  Finally, as an organizational measure, all 

percentages in the modified dataset were discretized by 

units of 20% to simplify RF. For example, if historical 

accuracy was 65%, it was discretized to 60%, while if 

percentage of hints used was 75%, it was discretized to 

80%. A sample of the resulting dataset is presented in Table 

2. 

In order to generate predictions for next problem 

performance, RF reads in features based on the organization 

of training data.  We propose two organization methods for 

the features depicted in Table 2, with results presented for 

both methods. 

Organization Method 1.  

The first method of feature organization employs the 

structure depicted in Table 2. Columns, read left to right, 

serve as successive features or predictors for RF. Each row 

or problem serves as a case, and the predicted value is 

correctness on the next problem. 

Organization Method 2.  

This organization method sought to amend potential data 

loss observed in Organization Method 1 due to the 

 

OC Student Skill Correct Attempts FRT (10s) % Hints FA Hist. Acc. 

1 34 102 1 1 3 0 0 0 

2 34 102 1 1 2 0 0 100 

3 34 102 0 2 3 60 1 100 

4 34 102 1 1 3 0 0 60 

1 56 102 0 1 2 0 2 0 

 

Table 2. Sample Data Following the Organization Method 1 
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OC Student Skill Correct Attempts FRT (10s) % Hints FA 

1 34 102 1 1 3 0 0 

2 34 102 1 1 2 0 0 

3 34 102 0 2 3 60 1 

4 34 102 1 1 3 0 0 

1 56 102 0 1 2 0 2 

 

Corr-1 Corr-2 Att-1 Att-2 FRT-1 FRT-2 %H-1 %H-2 FA-1 FA-2 HA-2 

X X X X X X X X X X X 

1 X 1 X 3 X 0 X 0 X X 

1 1 1 1 2 3 0 0 0 0 0 

0 1 2 1 3 2 60 0 1 0 100 

X X X X X X X X X X X 

Table 3. Sample Data Following the Organization Method 2 

consideration of only historical accuracy. Thus, a more 

detailed historical record is kept by implementing each 

feature at the current OC, as well as at OC-1 and OC-2. 

“Historical accuracy” of only OC-2 was included, for the 

information stored in historical accuracy of OC-1 and OC 

but not in that of OC-2 is covered by “Correct”. Each level 

of historical data is stored within each problem or case. A 

segmented display of this organizational method is 

provided in Table 3.  

Table 2 and Table 3 provide a visual justification for 

establishing the Opportunity Count Model.  Notice the 

imbalance of information pertaining to performance history 

observed in each organization method.  Within method 1, 

historical accuracy, which reflects student knowledge of the 

skill, is not consistently available, with data lost for 

measures of initial knowledge on the first OC.  Within 

organization method 2, the loss of data across OCs is more 

critical, with features showing potential inconsistent 

importance and reliability as predictors of future 

performance.   

Random Forest 

This paper used MATLAB’s implementation of RF 

(TreeBagger) to build student models and make predictions 

of student performance [7]. The dataset was divided into 

training and test segments, and 100 regression trees were 

developed using the training set. In this process, subsets of 

the training data were repeatedly sampled with replacement 

to construct trees. Along with these trees, TreeBagger also 

provided measures of out-of-bag error and feature 

importance: 

Out-of-bag Error [10].  

A subset of the training set is left out when building each 

tree, thereby leaving a portion of data “out of the bag.”  

After a tree is built, the out of bag subset moves through the 

tree and arrives at a prediction for the tree. The root mean 

square of pre-diction errors (RMSE) for all out-of-bag cases 

becomes known as the out-of-bag error.  

Feature Importance [10].  

When assessing the importance of a feature, m, the values 

of m in the out-of-bag cases are randomly permuted. A 

secondary measure of out-of-bag error is then calculated 

based on the permuted data.  The difference between this 

secondary out-of-bag error and the original out-of-bag error 

for m, is regarded as the importance of feature m.  The 

larger the difference in error, the more important role the 

feature plays in prediction. Negative importance values 

suggest a feature that is useless or even harmful in 

prediction. 

As RF progress through the decision tree building process, 

subsets of features are chosen randomly to establish node 

splits.  The number of features, n, in this subset can be 

limited to make enhance predictive accuracy.  For the 

current study, a wide range of values was explored, 

ultimately using n with minimum out-of-bag error to drive 

RF in the test set.  

For OCM model, we will run and test RF for each OC, with 

sub dataset of that OC. Code used in this paper can be 

accessed here. 

KT 

For KT, we used the Bayes Net Toolbox for Matlab. [1] 

RESULTS 

RF was run using both data organization methods to 

examine prediction accuracy and feature importance for the 

Traditional Model (TM), a single model for all OCs, and for 

the Opportunity Count Model (OCM), our proposed 

flexible approach in which separate models are built for 

different OCs.  Within each organization method, five fold 

https://drive.google.com/folderview?id=0B5Nb7T9qsMmHUTJXOVdmTmdZY0U&usp=drive_web
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Figure. 2. Prediction Accuracy of Models. (The point at ith OC shows prediction accuracy of i+1th correctness) 

cross validation was used to establish RF models. Standard 

Knowledge Tracing (KT) was also performed for 

comparison. 

Prediction Accuracy 

These four models were then used to make predictions of 

student next problem correctness within the test set.  Root 

mean square error (RMSE) was calculated for each 

prediction within each fold, and ultimately averaged across 

all five folds. Figure 2 shows the RMSE of model 

predictions for next problem correctness at various OCs. 

Values at the 5th OC represent error in predicting correct-

ness on the 6th OC. Prediction errors for KT are included 

for comparison.   

Feature Importance 

Feature importance, designated by the difference in out-of-

bag error, was calculated for features within the Traditional 

Model and the Opportunity Count Model for both data 

organization methods.  Importance was calculated for each 

feature within each fold, and ultimately averaged across all 

five folds. Table 4 presents feature importance for each 

model when using organization method 1, while Table 5 

presents feature importance for each model when using 

organization method 2.  

DISCUSSION 

There is dramatic decrease at prediction performance for 

almost all models after 10
th

 OC. Please note that in Figure 

2, the 10
th

 OC point represents the prediction accuracy of 

11
th

 OC correctness. We believe that the main reason for 

this decrease in performance is caused by the data set. In 

ASSISTments, most skill builders have daily limit of 10 

OCs, which means students will stop practice after 10 OCs, 

and data of 11OCs (and later) came from some days later. 

OC Skill Correct Attempts FRT (10s) % Hints FA Hist. Acc. 

TM        

   All 13.1 2.88 1.89 4.70 2.54 2.19 3.91 

OCM        

 1 6.21 0.83 0.81 1.16 0.81 0.76 0.00 

 2 7.35 0.79 0.22 1.29 0.74 0.48 1.79 

 3 6.99 1.08 0.08 1.38 0.68 0.56 1.89 

 4 6.67 0.78 0.49 1.20 0.39 0.65 1.57 

 5 6.11 0.71 0.48 0.98 0.46 0.8 0.51 

 11 1.29 -0.07 -0.02 0.07 -0.07 0.2 0.44 

Table 2. Feature Importance in Data Organization Method 1 
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OC Skill Correct Attempts FRT (10s) % Hints FA 

TM       

   All 2.96 -0.98 1 0.41 0.93 -0.28 

OCM       

 1 2.51 0.24 0.31 0.45 0.33 0.34 

 2 3.95 0.28 -0.06 0.55 0.23 -0.02 

 3 3.97 0.46 0.13 0.41 0 0.01 

 4 3.68 0.33 0.14 0.61 -0.06 0.17 

 5 3.8 0.23 0.15 0.49 0.06 0.12 

 11 0.68 0.08 -0.04 -0.19 -0.26 -0.17 

 

OC-1 Correct-1 Attempts-1 FRT (10s)-1 % Hints-1 FA-1 

TM      

   All -0.01 -1.59 -3.43 -3.73 -1.84 

OCM      

 1 0 0 0 0 0 

 2 0.87 0.11 0.3 0.18 0.07 

 3 0.65 0.11 0.28 0.12 -0.04 

 4 0.33 0.21 0.26 -0.04 0.12 

 5 0.1 0.06 0.27 -0.06 0.01 

 11 0.24 -0.1 0.09 -0.13 -0.19 

 

OC-2 Correct-2 Attempts-2 FRT (10s)-2 % Hints-2 FA-2 Hist. Acc.-2 

TM       

   All -2.12 -4.65 -6.23 -2.14 -1.18 -5.09 

OCM       

 1 0 0 0 0 0 0 

 2 0 0 0 0 0 0 

 3 0.79 0.06 0.08 -0.23 -0.14 0 

 4 0.63 0.21 0.28 -0.04 -0.27 0.5 

 5 0.12 -0.17 0.25 -0.28 -0.02 0.17 

 11 -0.12 0.06 -0.05 -0.23 -0.15 -0.02 

Table 3. Feature Importance in Data Organization Method 2 for Traditional Model 

The discontinuity between 10
th

 and 11
th

 OC weakens the 

performance of models that rely on previous OCs to predict 

NPC. On the other hand, the data size decreased for 

modeling as OC increases, as shown in Figure 1. KT is 

based on Hidden Markov Model (HMM), which learns 

parameters more and more accurately as it encounters more 

data along OCs. Therefore, data size decrease will not harm 

performance of KT dramatically. However, OCM is 

building models at each OC, depending data size at each 

OC. The model accuracy depends highly on the data size at 

each OC. This may explain that KT performs better than 

OCM at later OCs. 



16 

 

The two traditional models have very bad prediction 

accuracy along all OCs. This is not surprising. Traditional 

models built one model for all OCs. On one hand, they have 

much fewer parameters (or freedom degree). On the other 

hand, they don’t consider the variance of features’ 

importance and availability at different OCs. 

Within 10 OCs, the best OCM performs always better than 

KT, especially at the 1
st
 and 2

nd
 OCs (predicting 2

nd
 and 3

rd
 

correctness). At the very early OCs, KT does not have 

access to many OCs, and has not learned good parameters 

for HMM. On the contrary, RF exploits more features that 

KT, and learns from more previous information to build a 

better model.   

Also, using organization method 2, the model is always 

better than using organization method 1, whether for TM or 

OCM. This can be explained by the fact that organization 

method 2 provides more detailed information, rather than 

one aggregated feature from previous OCs. Thanks to the 

self-cross-validation mechanism within RF, we don’t need 

to worry about overfitting when using a lot of features. 

By comparing different models, results suggest using 

different modeling techniques at different phase of 

students’ practice. 

Further, findings suggest that feature importance varies as 

OC changes, supporting the proposed approach to student 

modeling when employing rich features. The results 

presented in Tables 4 and 5 revealed that regardless of 

organization method, feature importance could differ 

considerably with increases in OC.  For example, when 

considering an OC of 2 using organization method 1, aside 

from the importance of skill identification, the most 

relevant features within the model were first response time 

and historical accuracy. However, when considering an OC 

of 5, first response time still dominated, but historical 

accuracy was not as important. When observing the same 

OC models using organization method 2, the most relevant 

feature within the model for an OC of 2 was previous 

problem correctness. For an OC of 5, features gain 

complexity and first response time became most important, 

aside from skill. It should also be noted, that features with 

negative values for importance, or those that potentially 

hinder modeling, differ across OCs. Within the TM, most 

features that consider historical elements performance using 

organization method 2 actually hurt the modeling process, 

as observed in the model’s low predictive accuracy. This is 

likely due to the fact that these features rely heavily on past 

OCs, making the model suffer a lot from information loss. 

On the contrary, within the OCM most of these features 

appear helpful when modeling low OCs. Thanks to these 

useful features, OCM is able to outperform KT at low OCs. 

The more interesting point of feature variation is to find the 

important factor at different phase of learning. However, 

since this paper focuses on the prediction accuracy of 

student modeling, and incorporates a lot of features, it is 

hard to find a clear pattern of learning. But in future work, 

we can use a simpler model to detect what features are 

important at different learning phase and why. 

CONTRIBUTION 

The present study revealed that the predictive accuracy of 

models is strongly linked to the organization of a dataset 

and oscillations in feature availability and importance 

within differing OCs. The OCM, proposed as a flexible 

approach to student modeling, was observed to be more 

successful than traditional modeling methods when 

considering OCs below 10. Also, different modeling 

techniques shine at different phase of students’ practice.  
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ABSTRACT 

The focus of the learning analytics community bridges the gap 

between controlled educational research and data mining. Online 

learning platforms can be used to conduct randomized controlled 

trials to assist in the development of interventions that increase 

learning gains; datasets from such research can act as a treasure 

trove for inquisitive data miners. The present work employs a data 

mining approach on randomized controlled trial data from 

ASSISTments, a popular online learning platform, to assess the 

benefits of incorporating additional student performance data 

when attempting to differentiate between two user groups. 

Through a resampling technique, we show that partial credit, 

defined as an algorithmic combination of binary correctness, hint 

usage, and attempt count, can benefit assessment and group 

differentiation. Partial credit reduces sample sizes required to 

reliably differentiate between groups that are known to differ by 

58%, and reduces sample sizes required to reliably differentiate 

between less distinct groups by 9%. 

 

Categories and Subject Descriptors 

K: Applications to Education. K.3: Computers and Education. I.6 

Simulation and Modeling. 

General Terms 

Measurement, Experimentation, Reliability. 

Keywords 

Partial Credit, Group Differentiation, Resampling with 

Replacement, Randomized Controlled Trial, Data Mining. 

INTRODUCTION 
The learning analytics and educational data mining communities 

have established a variety of well-vetted models to predict student 

knowledge and trace performance both within and across 

knowledge components (i.e., skills). The gold standard for student 

modeling, Knowledge Tracing (KT), has maintained its reign for 

almost a quarter-century despite relying on a rudimentary 

sequence of correct and incorrect responses to estimate the 

probability of student knowledge [2]. Attempts to enrich this 

approach have included supplemental estimates of prior 

knowledge to individualize predictions to each student [9], 

supplemental estimates of item difficulty to individualize to each 

problem [10], and the implementation of flexible correctness via 

consideration of hint usage and attempt count [12, 13, 7]. Despite 

these excursions, popular learning systems, including the 

Cognitive Tutor series, still largely rely on traditional KT to 

inform mastery learning [4]. 

In parallel, enthusiastic support has been growing for the use of 

randomized controlled trials embedded within online learning 

platforms to investigate best practices and enhance the user 

experience. Randomized controlled trials are the soundest 

approach to social science, allowing researchers to postulate 

causal relationships between independent and dependent 

variables. Within the realm of education, experimental design has 

historically been longitudinal, with formal pre- and post-tests, 

highly controlled curricula, and vast sample populations required 

for class-level or even school-level randomization. However, the 

expanding popularity of online learning platforms used for 

classwork and homework offers researchers an opportunity to 

gather data more efficiently, with fewer logistic constraints, and 

requiring smaller samples due to random assignment at the 

student-level. 

The present work employs data mining methodologies on 

randomized controlled trial data from ASSISTments, a popular 

online learning platform, to assess the benefits of incorporating 

additional student performance data when attempting to 

differentiate between two user groups. The platform, created in 

2002, now supports over 50,000 users around the world, providing 

students with immediate feedback and enhancing assessment for 

teachers [3]. The ASSISTments platform is an easily accessible 

shared tool for educational research that offers the unique 

opportunity to bridge the gap between the analysis of randomized 

controlled trials and more traditional data mining. Considering 

student performance variables for the purpose of group 

differentiation is arguably a worthy venture for both realms. 

Many learning platforms assess student performance using 

standard binary correctness (i.e., a student’s accuracy on her first 

solution attempt). Instead, we argue for a combination of features 

that better define the learning process: initial accuracy, feedback 

usage, and attempts required for success. The present work 

suggests that such features can be combined to establish a partial 

credit metric to enhance analytic efficiency when attempting to 

differentiate between two user groups (i.e., experimental 

conditions). It is not surprising that a more robust view of student 

performance can alter a researcher’s ability to pinpoint the 

effectiveness of an intervention.  Modeling numerous features per 

data point requires fewer data points to arrive at distinct 

conclusions (i.e., posttests could simultaneously be shortened and 

yet made more robust for both students and researchers). Previous 

work has also suggested that infusing controlled assessment with 
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learning opportunities (i.e., providing feedback or allowing 

multiple attempts) directly benefits robust student learning [1]. 

However, many researchers hesitate when considering the 

allowance of these features within posttests. As such, the present 

work seeks to validate the allowance of ‘partial credit’ within 

randomized controlled trial posttests. 

Although ASSISTments employs binary scoring, feedback usage 

and attempts required for success can be considered in the 

algorithmic calculation of partial credit scores. Recent research 

within ASSISTments has examined the potential benefits of 

partial credit scoring for student modeling [7] and has validated 

partial credit penalizations using an extensive grid search of 

possible scoring procedures [6]. We extend this work by asking: 

Does partial credit scoring enhance the efficiency with which 

significant differences can be detected between groups of students 

within a randomized controlled trial? We define ‘enhanced 

efficiency’ as a reduction in the sample size required to reliably 

observe significant differences between groups (akin to enhancing 

power, or reducing Type II error). 

DATASET 
The dataset is comprised of log files from a previously published 

randomized controlled trial on the effects of interleaving skill 

content within a brief homework assignment [8]. The original 

study was conducted with a group of participating teachers from a 

suburban middle school in Massachusetts. Researchers worked 

with teachers to select content for three skills (A, B, C). A 

practice session comprised of twelve questions (four per skill) was 

presented to students in one of two possible linear presentations: 

blocked or interleaved. Students randomly assigned to the blocked 

condition received questions grouped by skill (A1, A2, A3, A4, B1, 

B2, B3, B4, C1, C2, C3, C4), while those randomly assigned to the 

interleaved condition received the same questions in a mixed skill 

pattern (A1, A2, B1, B2, C1, C2, A3, B3, C3, B4, C4, A4). All 

students partook in a follow-up assignment containing three 

questions (A5, B5, C5) as a delayed posttest. The posttest was 

presented with tutoring in the form of on-demand hint messages 

and students were allowed multiple attempts to achieve accuracy. 

The original work presented an Analysis of Covariance 

(ANCOVA) on the average posttest performance of 146 students 

(n Blocked = 60, n Interleaved = 86) based on binary scoring. 

Results only trended toward significance across the full sample, 

but split file analyses revealed significant learning gains for low 

skill students who had received the interleaved assignment. In a 

parallel analysis, average hint usage and attempt counts at posttest 

were considered through a Multivariate Analysis of Covariance 

(MANCOVA), with results suggesting a significant multivariate 

effect driven by a reduction in posttest hint usage for students in 

the interleaved condition. These results inspired the present work. 

Binary scoring alone could not consistently allow for reliable 

group differentiation until controlling for student skill level. 

Additionally, robust value was added via consideration of posttest 

variables that define partial credit in the present work. How would 

results have differed if the authors of the original work had 

considered algorithmic partial credit scoring? 

METHODOLOGY 
To examine the potential for using partial credit as a metric to 

more efficiently differentiate between groups, the dataset was 

processed using a definition of partial credit scoring previously 

validated within ASSISTments. Past research on modeling student 

performance within ASSISTments has revealed that certain 

definitions of partial credit significantly outperform others when 

attempting to predict next problem performance [6]. The 

algorithm presented in Figure 1, originally defined in [7], has been 

proven as an effective definition in the context of modeling 

student performance [7]. This algorithm establishes a score 

categorization based on logged information regarding the 

student’s performance: the number of attempts required to reach 

an accurate response (attempt), the number of hints requested 

(hint_count), and whether or not the student was provided the 

answer through the bottom out hint (bottom_hint). A version of 

this algorithm was recently implemented within the ASSISTments 

platform. 

After passing the dataset through the algorithm presented in 

Figure 1, the resulting file contained categorical partial credit 

scores (0, 0.3, 0.6, 0.7, 0.8, 1.0) for each students’ performance on 

each problem in the practice and posttest sessions.  Students could 

still earn full credit in the traditional sense (i.e., answering 

correctly on the first attempt), but only lost full credit if they made 

more than five attempts or were provided the answer through the 

bottom out hint. An example of the processed data, with variables 

from the original file as well as the resulting penalizations and 

partial credit scores, is presented in Table 1. The processed dataset 

has been stripped of student identifiers and is available at [11] for 

reference. 

When considering user groups, this dataset offered two clear 

opportunities for group differentiation: experimental condition 

and discretized student performance level. The latter metric 

defines students as either high performing or low performing 
 

IF attempt = 1 AND correct = 1 AND hint_count = 0 

       THEN 1 

ELSIF attempt < 3 AND hint_count = 0 

     THEN .8 

ELSIF (attempt <= 3 AND hint_count=0) 

OR (hint_count = 1 AND bottom_hint != 1) 

     THEN .7 

ELSIF (attempt < 5 AND bottom_hint != 1) 

OR (hint_count > 1 AND bottom_hint != 1) 

     THEN .3 

ELSE 0 

Figure 1. Partial credit algorithm originally defined in [7]

 

Table 1. Randomized controlled trial data with partial credit algorithm employed 

Student Condition Problem Binary Hints Bottom Out Attempts Penalization Partial Credit Score 

Student 1 Interleaved A1 0 1 0 2 0.3 0.7 

Student 1 Interleaved B1 0 0 0 2 0.2 0.8 

Student 1 Interleaved C1 1 0 0 1 0.0 1.0 

Student 2 Blocked A1 0 3 1 3 1.0 0.0 

Student 2 Blocked A2 0 0 0 3 0.3 0.7 

Student 2 Blocked A3 0 1 0 4 0.7 0.3 
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Figure 2. The resampling process used to create samples of n students from each population. Each set of samples was used in a  

t-test and significance values were recorded. This process was repeated 5,000 times for each group of n students. 
 

based on a measure of prior knowledge calculated using the 

ASSISTments database. Prior knowledge is established by 

considering the average accuracy (in the binary sense) of all 

problems that a student has ever solved within ASSISTments. A 

median split can then be applied to this metric within a dataset to 

discretize groups of generally ‘high performing’ and generally 

‘low performing’ students. In previous research, these groups 

have been found to exhibit significantly different performance, 

with low performing students logging reliably lower accuracy, 

more hints, and more attempts [8]. Thus, while observing 

differentiation between experimental conditions is subject to the 

success of the intervention, grouping students by skill level offers 

an obvious differentiation to test the efficacy of partial credit.  

The full sample (146 students) was used to test differentiation 

between student performance levels. Equivalent samples of 

students were randomly selected from each performance level in 

single student increments (i.e., 5 students, 6 students, 7 students, 

etc.) For each set of equivalent samples of size n, an independent 

samples t-test was performed to compare the difference in partial 

credit scores between Sample 1 (a subset, n, of high performing 

students) and Sample 2 (a subset, n, of low performing students). 

A p-value denoting level of significance was recorded. This 

process was repeated to examine differences between Sample 1 

and Sample 2 when considering binary scoring. These ‘trials’ 

were repeated 5,000 times per sampling increment. This process is 

depicted visually in Figure 2. For both partial and binary credit, 

sets of resulting p-values were then analyzed to determine the 

percentage of trials in which significant differences were observed 

between samples (p < .05). Findings were graphed for a visual 

comparison of the two scoring methods. Analyses and mappings 

were conducted using MATLAB [5] via code available for further 

consideration at [11].  

This procedure was also used to differentiate between students 

based on experimental condition: blocked or interleaved. As the 

original work suggested that experimental condition only 

significantly altered achievement in low performing students, the 

present analysis considers only this subset of the original sample. 

Resampling with replacement was then used to establish artificial 

groups as large as desired. Please note that resampling is not 

employed in the present work to draw conclusions regarding the 

strength of a particular subsample or condition. The sole purpose 

of our analysis is to show that partial credit scoring can be used to 

reduce the sample sizes required to reliably differentiate between 

groups.  

RESULTS 
Results suggest that partial credit is exceptionally efficient in 

differentiating between distinct groups. Table 2 presents the 

differences in average correctness, hint usage, and attempt count 

observed when students are discretized into high and low 

performance levels - two groups that we know to be quite 

discernible and are therefore used here to validate our approach. 

Figure 3 depicts the percentage of samples in which significant 

differences were observed between these two groups.  As these 

groups show obvious distinctions, both binary and partial credit 

scoring allow for 100% reliability of group differentiation with 

samples of fewer than 60 students. However, it should be noted 

that partial credit (red/dashed line) requires consistently smaller 

samples and attains reliability far more efficiently than binary 

scoring (blue/solid line). The resampling procedure suggested that  

Table 2. Means and SDs for average correctness, hints, and 

attempts across performance levels 

Group Correctness Hints Attempts 

Low Performing 0.54 (0.28) 0.72 (0.69) 2.05 (1.11) 

High Performing 0.75 (0.22) 0.08 (0.21) 1.40 (0.43) 

 

 

Figure 3. Significant differentiation in Performance Levels 

using Binary Scoring and Partial Credit Scoring. In groups 

with a known significant difference, differentiation is more 

efficient using partial credit. Sample size required for 

significant differentiation in 90% of trials is reduced by 58%. 
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Figure 4. Significant differentiation in Condition using Binary 

Scoring and Partial Credit Scoring. In groups with a less 

substantial difference, differentiation is still almost always 

more efficient using partial credit. Sample size required for 

significant differentiation in 90% of trials is reduced by 9%. 
 

Table 3. Means and SDs for average correctness, hints, and 

attempts across conditions for low performing students 

Condition Correctness Hints Attempts 

Blocked 0.48 (0.25) 0.89 (0.67) 1.98 (0.58) 

Interleaved 0.56 (0.29) 0.62 (0.67) 2.16 (1.37) 

when using partial credit, equivalent groups of 13 students offer 

enough power to observe significant differences between 

performance levels in 90% of trials, while equivalent groups of 31 

students were required when using binary scoring. Thus, within 

this context, using partial credit allowed sample sizes to be 

reduced by 58% while still obtaining the same result. 

Although significant differences between experimental conditions 

within low performing students were more difficult to discern, as 

limited by the strength of the intervention, partial credit continued 

to offer more robust group differentiation when considering these 

user groups, as depicted in Figure 4. An analysis of means for the 

variables that combine to form partial credit revealed that low 

performing students in the interleaved condition were more 

accurate on average at posttest with fewer hints, as displayed in 

Table 3. Resampling suggested that when using partial credit, 

equivalent groups of 175 students offer enough power to observe 

significant differences between performance levels in 90% of 

trials, while equivalent groups of 192 students were required when 

using binary scoring. Thus, within this context, using partial credit 

allowed sample sizes to be reduced by 9% while obtaining the 

same result.  

METHOD VALIDATION 
When smaller equivalent sample sizes are required to differentiate 

between groups, Type II error is reduced for consistent sample 

sizes across scoring metrics. Before celebrating this finding, it is 

necessary to evaluate whether partial credit scoring in turn 

increases Type I error.  

If no actual difference exists between two groups and we maintain 

a threshold of p < .05 in determining a significant difference, the 

Type I error rate, or alpha, should be 5%. In order to determine 

whether   partial  credit  has   reduced  Type  II   error  simply   by 

 
Figure 5. Type I error when resampling students from a 

solitary population using Binary Scoring and Partial Credit 

Scoring. Measures show roughly similar trends, suggesting 

that while partial credit allows for more robust group 

differentiation, it does not significantly impact Type I error. 

increasing Type I error, we simulated a null experiment with our 

dataset.  The full sample population (146 students) was subjected 

to the resampling (with replacement) process, without predefining 

students as having high or low performance or as belonging to a 

particular experimental condition. Thus, for every sample 

increment, n, Sample 1 and Sample 2 were randomly selected 

from the full population (establishing samples that were not 

distinctly different). An independent samples t-test was conducted 

to analyze the difference in partial credit scores between 

subsamples. This ‘trial’ was repeated 5,000 times, with p-values 

recorded for each trial. Complimentary trials were conducted 

using binary correctness. The percentage of trials resulting in 

significantly different subsamples is charted in Figure 5. Both 

measures show roughly similar trends, with approximately 5% of 

trials resulting in significant findings. This finding suggests that 

while partial credit allows for more robust group differentiation, it 

does not significantly influence Type I error. 

DISCUSSION & FUTURE WORK 
The present work sought to examine whether partial credit scoring 

could be used to enhance the efficiency of group differentiation 

within a previously published randomized controlled trial. Results 

confirmed our expectations, suggesting that partial credit is a 

more robust measure of student performance that increases the 

reliability of group differentiation and reduces the sample size 

required to observe significant differences (or, enhances power).  

Partial credit scoring held merit for differentiating both between 

student performance levels and between experimental conditions. 

The lack of strength in the latter finding may be correlated with 

the efficacy of the intervention itself; differentiation based on a 

learning intervention should not be expected to be as robust as 

differentiation based on a mathematically established 

dichotomy.  Still, trends in reliability for both scoring metrics 

follow the standards of a power analysis: if sample sizes in the 

original work had been larger, the intervention would have proven 

reliably significant. 

It should be noted that while we observed consistent positive 

effects for partial credit, it is mathematically possible for the 

metric to underperform binary scoring. When using t-test 
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comparisons, smaller p-values are obtained as t-statistics increase. 

T-statistics are inflated when mean differences between groups 

are large while variance within groups is low. Mathematically, the 

use of partial credit reduces within group variance while 

increasing the mean for each group. With this increase in means, 

it would be possible for binary scoring to outperform partial credit 

in a heavily skewed dataset.  

A potential limitation of this approach can be found in the balance 

between enhancing group differentiation by adding measures of 

student performance and overfitting student performance. One 

could argue that to most efficiently differentiate between groups, 

all available student data could be collapsed into a partial credit 

metric, perhaps using a regression model. While this would likely 

result in better differentiation, the overly robust definition of 

‘partial credit’ would fail to generalize to other online learning 

platforms, or possibly even to other content or user populations 

within the ASSISTments platform.  Future work should consider 

the pros and cons of supplementing partial credit scoring with 

additional measures of student performance. 

Another potential limitation of this work is that students’ habits 

within the ASSISTments tutor are normative to those of a binary 

system; the majority of students understand that they will lose all 

credit if they request tutoring feedback or make more than one 

attempt.  Thus, any definition of partial credit that uses a data 

mining approach to work backwards toward group differentiation 

should be considered potentially skewed. As partial credit was 

recently implemented within ASSISTments, future work should 

consider how the real-time effects of partial credit scoring impact 

the power of randomized controlled trials.  

Future research should also consider how our partial credit 

approach contends with latent group differentiation, in an attempt 

to outperform modeling techniques like Knowledge 

Tracing.  Even if latent, when two groups are qualitatively 

different (i.e., learned vs. unlearned, denoting skill mastery within 

KT) our method may be feasible to observe patterns leading to 

more reliable group differentiation. Future work should examine 

this paradigm, and consider the generalizability of using partial 

credit scoring within the context of other platforms and domains. 

CONTRIBUTION 
The work presented herein is novel in that it sought to bridge the 

gap between educational research and data mining by applying 

post hoc mining methods to the results of a previously published 

randomized controlled trial. Results suggested a substantial 

benefit of considering partial credit scoring within online learning 

platforms: increased efficiency in group differentiation which 

translates to increased power and reduced Type II error. Our 

findings further confirm the notion that allowing students to learn 

during assessment is beneficial to students and researchers alike. 

Student performance metrics that are typically lost on traditional 

posttests can actually improve data analysis. Further, our results 

suggest that by using robust measures of student performance, the 

number of items or opportunities analyzed need not be large to 

result in significant group differentiation, offering evidence for 

short, minimally invasive assessments. These findings translate to 

real world implications: significant outcomes can be observed 

with smaller samples and with fewer overall data points, reducing 

the many of the costs and constraints of experimental research. 

ACKNOWLEDGMENTS 
We acknowledge funding from multiple NSF grants (ACI-

1440753, DRL-1252297, DRL-1109483, DRL-1316736, DRL-

1031398), the U.S. Dept. of Ed. (IES R305A120125, 

R305C100024, GAANN), ONR, and the Gates Foundation. 

REFERENCES 
[1] Attali, Y. & Powers, D. (2010). Immediate feedback and 

opportunity to revise answers to open-end questions. 

Educational and Psychological Measures, 70 (1), 22-35. 

[2] Corbett, A.T., Anderson, J.R. (1995). Knowledge Tracing: 

Modeling the Acquisition of Procedural Knowledge. User 

Modeling and User-Adapted Interaction, 4, 253-278. 

[3] Heffernan, N. & Heffernan, C. (2014). The ASSISTments 

Ecosystem: Building a Platform that Brings Scientists and 

Teachers Together for Minimally Invasive Research on 

Human Learning and Teaching. Int J of AIED, 24(4), 470-

497. 

[4] Koedinger, K.R. & Corbett, A.T. (2006). Cognitive tutors: 

Technology bringing learning science to the classroom.  In 

K. Sawyer (Ed.), The Cambridge handbook of the learning 

sciences (61-78). New York: Cambridge University Press. 

[5] MATLAB version R.2013.a (2013). Natick, Massachusetts: 

MathWorks, Inc. Accessible at www.mathworks.com 

[6] Ostrow, K., Donnelly, C., & Heffernan, N. (2015). 

Optimizing Partial Credit Algorithms to Predict Student 

Performance. In Santos, et al. (eds.) Proc of the 8th Int Conf 

on EDM, 404-407.  

[7] Ostrow, K., Donnelly, C., Adjei, S., & Heffernan, N. (2015). 

Improving Student Modeling Through Partial Credit and 

Problem Difficulty.  In Russell, D.M., Woolf, B., & Kiczales, 

G. (eds.) Proc of the 2nd ACM Conf on L@S, 11-20.  

[8] Ostrow, K., Heffernan, N., Heffernan, C., Peterson, Z. 

(2015). Blocking vs. Interleaving: Examining Single-Session 

Effects within Middle School Math Homework. In Conati, 

Heffernan, Mitrovic, & Verdejo (eds.) Proc of the 17th Int 

Conf on AIED. Springer International, 388-347.  

[9] Pardos, Z.A. & Heffernan, N.T. (2010). Modeling 

Individualization in a Bayesian Networks Implementation of 

Knowledge Tracing. In De Bra, Kobsa, & Chin (eds.) Proc of 

the 18th Int Conf on UMAP, 255-266. 

[10] Pardos, Z.A., & Heffernan, N.T. (2011). KT-IDEM: 

Introducing Item Difficulty to the Knowledge Tracing 

Model. In Joseph A. Konstan et al. (Eds.), Proc of the 19th 

Int Conf on UMAP, 243-254. 

[11] Wang, Y. (2015). Data and Code for Enhancing the 

Efficiency and Reliability of Group Differentiation through 

Partial Credit: http://tiny.cc/LAK2016-Resampling 

[12] Wang, Y. & Heffernan, N.T. (2011). The “Assistance” 

Model: Leveraging How Many Hints and Attempts a Student 

Needs. In Proc of the 24th Int FLAIRS Conf. 

[13] Wang, Y. & Heffernan, N. (2013). Extending Knowledge 

Tracing to Allow Partial Credit: Using Continuous versus 

Binary Nodes. In K. Yacef et al. (Eds.) AIED 2013, LNAI 

7926, 181-188.

 

  

http://www.mathworks.com/


22 

 

Partial Credit Revisited: Enhancing the Efficiency and 

Reliability of Group Differentiation at Scale 
Yan Wang, Korinn Ostrow, Neil Heffernan 

Worcester Polytechnic Institute 
Worcester, MA 01609 

{ywang14, ksostrow, nth} @wpi.edu  
 
This section has been submitted to: 

Wang, Y., Ostrow, K. & Heffernan, N. (2016). Partial Credit Revisited: Enhancing the Efficiency and Reliability of Group 
Differentiation at Scale. The 9

th
 International Conference on Educational Data Mining. ACM.  

  

ABSTRACT 

Partial credit scoring is an assessment technique commonly used 

by teachers in authentic learning environments to measure student 

knowledge. Conversely, some of the most popular learner models 

rely on the binary correctness of skill items to predict student skill 

mastery. The present work seeks to push this paradigm by 

extending previous research on the benefits of partial credit for 

group differentiation. Datasets from ASSISTments and Cognitive 

Tutor are used to assess the implications of this approach at scale. 

Within twelve skills (six per platform), a resampling approach is 

used to conduct 5,000 trials per increment of n students to 

determine the size of equivalent samples required to reach a 

threshold in which 90% of trials report significant differences 

between high and low performing students (a ground truth 

difference). Results suggest that in eleven out of twelve skills, 

partial credit offered more efficient group differentiation. 

Applications of this approach to learner modeling and 

implications for the EDM community are discussed. 

Keywords 

Partial Credit, Group Differentiation, Resampling, Skill Builders, 

ASSISTments, Cognitive Tutor. 

INTRODUCTION 
Partial credit scoring is an assessment technique commonly used 

by teachers in authentic learning environments to measure student 

knowledge. The approach provides a softer and generally more 

accurate assessment of skill knowledge than binary scoring, which 

argues that students either know (100%; 1) or do not know (0%; 

0) a skill item. Previous work promoting the use of partial credit 

within online learning platforms [8; 9] and within Educational 

Data Mining (EDM) practices [19; 4] has shown that researchers 

can gain a more robust understanding of student knowledge by 

looking beyond binary correctness when using skill items to 

predict mastery.   

This observation, while somewhat obvious, still has the potential 

to impact traditional EDM approaches to learner modeling. Some 

of the most popular modeling techniques rely on the binary 

correctness of skill items to predict when a student will learn or 

‘mastered’ a skill. For instance, Bayesian Knowledge Tracing 

(BKT), still regarded as a gold standard in student modeling after 

more than twenty years, relies on four parameters per skill item to 

predict the moment of learning [3]. Students begin working on a 

skill with some level of prior knowledge (P(L0)), and within each 

item exist probabilities that they may get the item incorrect 

although they know the skill (slip, P(S)), that they may accurately 

answer the item although they do not know the skill (guess, P(G)), 

and that they learn from the item (P(T)) [3]. In recent years, 

researchers have strived to enhance the predictions produced by 

BKT by accounting for more robust student measures including 

personalized predictions of prior knowledge [11; 20], item 

difficulty [12], and partial credit scoring [17; 18; 9].  

Although many of these individualized BKT models have proven 

successful, standard BKT is still employed in well-known tutoring 

systems and data mining endeavors. The Cognitive Tutor series 

uses knowledge tracing to track students’ skill progress [4], and 

its creators discussed the approach in their landmark ‘Lessons 

Learned,’ noting that the field should seek to predict skill mastery 

by first gauging mastery at the item level [1]. BKT within 

Cognitive Tutor is tailored to individual students to track learning, 

rather than to the corpus of users as observed in many instances of 

the approach [1].  

Cognitive Tutor, and other Intelligent Tutoring Systems, record 

binary accuracy scores as students complete items within skills.  

However, additional data can be extracted from tutor logs to 

algorithmically calculate partial credit scores for these items 

through data mining. This practice was used in [19] to show an 

increase in the efficiency and reliability with which significantly 

different conditions from a randomized controlled trial conducted 

within ASSISTments could be observed. The original work also 

presented proof of concept of the more substantial benefits of 

partial credit scoring by exploring the efficiency with which 

discretized student performance levels (i.e., high performing vs. 

low performing) could reliably be detected using both binary and 

partial credit scoring approaches [10]. Partial credit was 

consistently more efficient, requiring smaller sample sizes to 

detect ground truth differences. The present work seeks to extend 

these previous accounts of the benefits of partial credit for group 

differentiation by using datasets from ASSISTments and 

Cognitive Tutor to assess the implications of this approach at 

scale. 

Specifically, the present work seeks to examine the efficacy and 

reliability of group differentiation through partial credit across 

platforms and at scale. Further, a data mining approach is used to 

explore how the definition used to employ partial credit effects the 

magnitude of its benefit to group differentiation across platforms.   
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DATASETS 
Datasets from two popular systems were collected to examine the 

potential benefits of using partial credit in data mining endeavors. 

The following subsections detail those platforms and the datasets 

considered herein.  

ASSISTments 
ASSISTments is a popular online learning platform for K-12 

mathematics, with a primary focus on skills at the middle school 

level. The platform provides assistance to more than 50,000 

student users around the world, while simultaneously serving as a 

powerful assessment tool for teachers [5]. Teachers have the 

capacity to assign a variety of problem sets for classwork and 

homework, and often use ASSISTments to collect and grade 

bookwork while allowing students the benefits of immediate 

feedback.  

Mastery learning based assignments called ‘Skill Builders’ are the 

most common type of assignment within ASSISTments. These 

problem sets are mapped to the Common Core State Standards [5] 

for clear organization and high accessibility. Skill Builders require 

students to complete a series of problems randomly selected from 

a skill pool until meeting a predefined threshold for skill mastery. 

The default for this threshold requires that students accurately 

answer three consecutive skill items. The dataset considered 

herein includes tutor log files from six of the most highly assigned 

Skill Builders within ASSISTments.  

While working through a Skill Builder, students are able to access 

tutoring in the form of hints and scaffolding problems.  For the 

current analysis, Skill Builders containing scaffolding problems 

were not considered in an attempt to purify opportunity count. 

Because scaffolding problems offer worked examples and guided 

direction by breaking a main problem down into sub-steps, 

answers for these questions tend to be skewed toward accuracy 

and can cloud the predictive ability of student models.  

The analyses presented herein represent problem level averages 

across each student’s first three skill opportunities (i.e., skill items 

solved).  This approach was taken in an attempt to prove that 

group differentiation could be accomplished more efficiently 

through partial credit even when items are limited. Thus, prior to 

analysis, the dataset was also cleaned to remove students that 

answered fewer than three items within each skill.  

Details pertaining to the six Skill Builders that comprise this 

dataset are presented in Table 1.  The log files used in this 

analysis were accrued between September 2009 and December 

2014 through regular student use of the system. Within the 

dataset, items were originally scored using binary correctness on 

the student’s first action or attempt. For each item, the log files 

also contained details pertaining to the tutoring usage and 

attempts made by each student.  For each of the six Skill Builders, 

an estimate of difficulty was calculated by considering the 

average accuracy of all students for all items within the 

skill.  Lower values of this metric were considered a higher 

difficulty, given the inverse nature of examining accuracy. Within 

Table 1, the Skill Builders are presented from most difficult 

(Equation Solving with More than Two Steps) to least difficult 

(Scientific Notation).  Multiple skills with varying difficulty were 

considered in an attempt to assess whether these factors moderate 

the benefits of partial credit. 

Cognitive Tutor - Algebra 1  
Cognitive Tutor is a series of broad reaching tutoring systems for 

students  in  grades  9-12  distributed  by  Carnegie  Learning  [2].  

Table 1. Details pertaining to ASSISTments skills 

Skill Topic 
Grad

e 

Student

s 

Difficulty

* 

Equation 

Solving (2 

Steps +) 

8 5,269 0.57 

Greatest 

Common 

Factor 

6 5,169 0.58 

Distributive 

Property 

7 5,693 0.63 

Mult. 

Fractions/Mixe

d #s 

5 4,719 0.74 

+/- Integers 7 6,314 0.80 

Scientific 

Notation 

8 6,502 0.81 

*Difficulty is represented by the average accuracy of all students on all 
problems within the skill. 

Table 2. Details pertaining to Cognitive Tutor skills 

Skill Topic Students Difficulty* 

Expressions, Negative 

Slopes 

263 0.34 

Combine Like Terms 264 0.62 

Find X, Positive Slopes 268 0.65 

Labeling Axes 263 0.67 

Consolidate Var w/ 

Coeff 

266 0.85 

Consolidate Var w/o 

Coeff 

263 0.90 

*Difficulty is represented by the average accuracy of all students on all 
problems within the skill. Grade is not accessible within Cognitive Tutor 

data, but all skills fall within the domain of Algebra 1. 

These tutors are built around the ACT-R theory of cognition, 

enlisting humanistic problem solving techniques to compare 

automated solution steps against student solutions and provide 

immediate feedback and assistance as necessary [1; 13]. Cognitive 

Tutors are distributed as a portion of broader curriculum reform, 

with courses available in multiple mathematics domains [15; 2]. 

Teachers generally adapt Cognitive Tutor and assign content for 

classwork or homework in alignment with other Carnegie 

Learning materials.  

The Cognitive Tutor dataset used in the present work is composed 

of data from the Algebra 1 Course and was promoted as part of 

the Knowledge Discovery and Data Mining (KDD) Cup dataset in 

2010 [6]. The full dataset, as retrieved from the PSLC DataShop 

[14], spans on academic year (2005-2006), with over 880K skill 

items completed by 559 students working within 106 Algebra 

skills. The present investigation focuses on data from the six most 

highly populated Knowledge Components, or skills. Details 

pertaining to these six skills are presented in Table 2.  
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All items within the Cognitive Tutor dataset carried binary scores 

for student performance, based on the student’s first action or 

attempt. The dataset also included information about the tutoring 

experienced by students while working through skill items. In 

order to mirror the ASSISTments dataset as closely as possible for 

equivalent analyses, the Cognitive Tutor dataset was further 

cleaned to remove students that answered fewer than three items 

within each skill, and estimates of difficulty for each of the six 

skills were calculated based on the average accuracy of all 

students for all items within the skill. Within Table 2, skills are 

presented from most difficult (Expression, Negative Slopes) to 

least difficult (Consolidate Variables without Coefficients).    

METHODS 
As the present work serves to extend previous research on the 

efficiency and reliability of partial credit in the context of group 

differentiation, the methodology presented herein was adapted 

from previous work and presents much of the same terminology 

[19]. The following subsections highlight the three primary steps 

required to evaluate partial credit in the context of group 

differentiation. 

Defining Partial Credit 
Previous work vetted partial credit as a method to efficiently and 

reliably differentiate between groups of students when running 

randomized controlled trials to examine the efficacy of learning 

interventions within ASSISTments [19]. Building upon that work, 

the present analysis relies on the same definition of partial credit, 

presented algorithmically in Figure 1 (originally sourced from 

[9]). For each skill item, this algorithm considers the student’s 

binary credit score alongside the first action they take when 

tackling the item (first_action), the number of attempts required to 

solve the item (attempt), the number of hints required to solve the 

item (hint_count), and a binary flag showing whether or not the 

student was given the answer through a bottom out hint 

(bottom_hint).  

By running the algorithm presented in Figure 1 on both datasets, 

categorical partial credit scores (0, 0.3, 0.7, 0.8, 1.0) were 

amended to each skill item for each student.  Using this approach, 

students lost credit primarily through the use of multiple hints or 

attempts. Full credit was only redacted for a skill item if the 

student used more than five attempts or requested the answer. 

When implemented in the platform, this goal of this method 

would be to allow students to access hint tutoring without 

suffering full penalization. Examples of this algorithmic 

calculation are presented for both ASSISTments and Cognitive 

Tutor data in Table 3. Full versions of the modified datasets have 

been stripped of student identifiers and made available at [16] for 

further reference. 

Discretizing Student Performance 
Within both datasets, students can be discretized as either high 

performing or low performing based on variables constructed to 

estimate of prior knowledge. Significantly different performance 

has been observed between these groups, with low performing 

 

IF attempt = 1 AND correct = 1 AND hint_count = 0 

       THEN 1 

ELSIF attempt < 3 AND hint_count = 0 

     THEN .8 

ELSIF (attempt <= 3 AND hint_count=0) 

OR (hint_count = 1 AND bottom_hint != 1) 

     THEN .7 

ELSIF (attempt < 5 AND bottom_hint != 1) 

OR (hint_count > 1 AND bottom_hint != 1) 

     THEN .3 

ELSE 0 

Figure 1. Partial credit algorithm originally defined in [9] 

students exhibiting reliably lower accuracy and higher hint and 

attempt use [10]. Using this type of known skill dichotomy offers 

a ground truth to test the strength of partial credit against binary 

scoring when differentiating between groups. Further, this 

metric’s success in previous work [19] reinforced its use when 

scaling up the examination of partial credit. 

Within ASSISTments, a student’s “prior knowledge” is 

established by considering the average accuracy of all items 

(across skills) ever solved by that student. This variable is 

available in all ASSISTments data reports. Within Cognitive 

Tutor, a similar variable was calculated by averaging a student’s 

accuracy across all available content with timestamps prior to 

beginning a particular skill.  It is possible that this metric was a 

more reliable account of prior knowledge within Cognitive Tutor, 

as knowledge components, or skills in the system all pertain to 

Algebra I. Based on these prior knowledge metrics, samples were 

divided into high and low performing students using a median 

split, and students were flagged as generally high performing or 

low performing, as shown in Table 3.  

Resampling with Replacement 
After defining partial credit and discretizing students by 

performance level, the datasets were primed for examining the 

efficiency of partial credit in comparison to binary scoring 

through a rigorous resampling procedure. To conduct resampling, 

equivalently sized groups of students were randomly sampled 

(with replacement) from the discretized performance levels in 

increments of five students (i.e., 5 students, 10 students, 15 

students, etc.). The replacement procedure allowed equivalent 

sample sizes to extend beyond the actual number of students 

available in the dataset to examine the simulated efficacy of 

partial credit within larger samples as necessary. 

After each equivalent sampling, an independent samples t-test was 

conducted to compare the difference in partial credit scores 

between performance levels. A second independent samples t-test 

was conducted to compare the difference in binary credit scores 

between performance levels. Resulting p-values were recorded for 

each test, concluding a single “trial.” “Trials” were repeated 5,000 

times per sampling increment. Essentially, this produced a list of 

5,000 p-values per metric, per equivalent sampling increment. P-

values were then analyzed to determine the percentage of trials in 

which differences between student performance levels were 

observed to be significant (p < .05). Findings for each metric were 

graphed for comparison across all twelve skills (six from each 

system), and are presented in Section 4, Figure 2. All analyses and 

mappings were conducted using MATLAB [7] via code that has 

been made available at [16]. 
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Table 3. An excerpt merged from both ASSISTments and Cognitive Tutor datasets to exemplify algorithmic partial credit scoring 

Student/System Performance Skill Opportunity Binary Hints Attempts Answer Partial Credit Score 

1-ASM High Distributive Property 1 0 1 2 0 0.7 

1-ASM High Distributive Property 2 1 0 2 0 0.8 

1-ASM High Distributive Property 3 1 0 1 0 1.0 

2-ASM Low Scientific Notation 1 0 2 3 0 0.3 

1-COG Low Combine Like Terms 1 0 3 4 1 0.0 

1-COG Low Combine Like Terms 2 0 0 3 0 0.7 

2-COG High Labeling Axes 1 0 1 2 0 0.7 

2-COG High Labeling Axes 2 1 0 1 0 1.0 

Note. ASM = ASSISTments, COG = Cognitive Tutor. Performance = Discretized student performance level. Opportunity = Sequential count 

of skill items experienced. Binary = Original binary score. Hints, Attempts, and Answer flag = student performance metrics for use in 

calculating partial credit. 

RESULTS 
Table 4. Means & SDs for correctness (C), hints (H), and 

attempts (A) across performance levels in ASSISTments 

Skill Topic C H A 

Equation Solving 

(2 Steps +) 

   

        High 0.65 

(0.33) 

0.63 

(0.83) 

1.82 

(3.80) 

        Low 0.49 

(0.37) 

1.13 

(1.05) 

2.04 

(2.46) 

Greatest Common 

Factor 

   

        High 0.65 

(0.30) 

0.42 

(0.68) 

1.95 

(6.24) 

        Low 0.50 

(0.33) 

0.94 

(0.95) 

2.56 

(3.16) 

Distributive 

Property 

   

        High 0.71 

(0.31) 

0.47 

(0.80) 

1.77 

(2.93) 

        Low 0.55 

(0.35) 

0.93 

(1.04) 

2.14 

(4.08) 

Mult. 

Fractions/Mixed #s 

   

        High 0.82 

(0.25) 

0.22 

(0.50) 

1.72 

(10.22) 

        Low 0.66 

(0.32) 

0.67 

(0.89) 

1.91 

(2.96) 

+/- Integers    

        High 0.87 

(0.22) 

0.08 

(0.30) 

1.24 

(0.56) 

        Low 0.73 

(0.31) 

0.26 

(0.62) 

1.66 

(2.27) 

Scientific Notation    

        High 0.86 

(0.23) 

0.13 

(0.40) 

1.33 

(1.01) 

        Low 0.75 

(0.30) 

0.35 

(0.71) 

1.83 

(6.36) 

ASSISTments 
Considering the ASSISTments dataset, results suggested that 

partial credit consistently offered more efficient group 

differentiation. For each skill topic, an analysis of means was 

performed to compare average correctness, hint usage, and 

attempt count within the first three items experienced by each 

student, depicting distinct trends between discretized performance 

levels, as show in Table 4.  The set of graphs in the left half of 

Figure 2 depict the percentage of samples in which significant 

differences (p < .05) were observed between performance levels 

for each skill topic. The graphs are presented from most difficult 

skill on the top left, to least difficult on the bottom right.  For all 

graphs, red lines denote partial credit and blue lines denote binary 

scoring.  

Within each skill topic, partial credit consistently outperformed 

binary scoring across sampling increments. The magnitude of this 

benefit was differential across sets, but did not appear to be 

correlated with skill difficulty. Benefit magnitude was determined 

by calculating the reduction in the size of equivalent samples 

required for significant group differentiation in 90% of Trials. 

This threshold is pinpointed in the graphs within Figure 2, and 

presented in detail in Table 5. Within ASSISTments data, partial 

credit allowed reliable group differentiation to be attained with 

significantly fewer students regardless of skill topic.  The average 

reduction across skill topics from binary scoring to partial credit 

was 23%, with a standard deviation of 8.8%.   

Table 5. Group size at which 90% of samples result in 

significant differentiation (p < .05) for ASSISTments skills 

 Group Size Reduction 

Skill Topic Partial Binary Binary to 

Partial 

Equation Solving 

(2 Steps +) 

75 95 21% 

Greatest Common 

Factor 

55 90 39% 

Distributive 

Property 

85 100 15% 

Mult. 

Fractions/Mixed 

#s 

55 75 27% 

+/- Integers 70 85 18% 

Scientific 

Notation 

115 140 18% 
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Note. A paired samples t-test of group sizes suggested that observed 

sample reductions were significant, p < .05. 

 

Table 6. Means & SDs for correctness (C), hints (H), and 

attempts (A) across performance levels in Cognitive Tutor  

Skill Topic C H A 

Expressions, 

Negative Slopes 

   

        High 0.42 

(0.31) 

1.10 

(1.36) 

2.41 

(1.27) 

        Low 0.26 

(0.30) 

2.01 

(1.85) 

2.91 

(1.72) 

Combine Like 

Terms 

   

        High 0.72 

(0.30) 

0.18 

(0.53) 

3.64 

(3.26) 

        Low 0.53 

(0.35) 

0.46 

(1.09) 

5.05 

(4.49) 

Find X, Positive 

Slopes 

   

        High 0.72 

(0.27) 

0.46 

(1.10) 

1.93 

(2.21) 

        Low 0.58 

(0.28) 

1.35 

(1.97) 

2.57 

(1.95) 

Labeling Axes    

        High 0.69 

(0.30) 

0.17 

(0.49) 

1.38 

(0.51) 

        Low 0.65 

(0.32) 

0.38 

(0.98) 

1.45 

(0.63) 

Consolidate Var w/ 

Coeff 

   

        High 0.88 

(0.22) 

0.08 

(0.29) 

1.18 

(0.35) 

        Low 0.81 

(0.25) 

0.23 

(0.55) 

1.30 

(0.55) 

Consolidate Var 

w/o Coeff 

   

        High 0.92 

(0.20) 

0.05 

(0.20) 

1.09 

(0.34) 

        Low 0.88 

(0.26) 

0.10 

(0.32) 

1.12 

(0.31) 

 

Cognitive Tutor 
A mirrored analysis was conducted for the Cognitive Tutor 

dataset. Results suggested that in five out of six skills, partial 

credit offered more efficient group differentiation. Means analyses 

for average correctness, hint usage, and attempt count within the 

first three items experienced by each student within each skill 

again depicted highly discretized performance levels, as shown in 

Table 6. The set of graphs in the right half of Figure 2 depict the 

percentage of samples in which significant differences (p < .05) 

were observed between performance levels for each skill topic. 

Again, the graphs are presented from most difficult skill on the 

top left, to least difficult on the bottom right, and red lines denote 

partial credit while blue lines denote binary scoring.  

Partial credit failed to outperform binary credit in one skill, 

“Combine Like Terms.” Within this skill, binary credit 

impressively outperformed partial credit, reaching reliable group 

differentiation with equivalent samples of 55 students, while 

partial credit required equivalent samples of 235 students (a 327% 

increase in sample size). In all other skills, the magnitude of the 

benefit provided by partial credit did not clearly correlate with 

skill difficulty.  The magnitude of this benefit is pinpointed in 

Figure 2, and presented in detail in Table 7. Considering the five 

skills in which differentiation benefited from partial credit, 

average reduction across skill topics from binary scoring to partial 
credit was 42%, with a standard deviation of 21.6%.  

 

Table 7. Group size at which 90% of samples result in 

significant differentiation (p < .05) for Cognitive Tutor skills 

 Group Size Reduction 

Skill Topic Partial Binary Binary to 

Partial 

Expressions, 

Negative Slopes 

70 85 18% 

Combine Like 

Terms 

235 55 -327% 

Find X, Positive 

Slopes 

60 80 25% 

Labeling Axes 350 1090 68% 

Consolidate Var 

w/ Coeff 

110 275 60% 

Consolidate Var 

w/o Coeff 

350 575 39% 

Note. A paired samples t-test of group sizes suggested that observed 

sample reductions were significant, p < .05. 
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Figure 2. Significant differentiation in student performance level across six ASSISTments skills (Left) and six Cognitive Tutor skills (Right) using binary scoring (Blue) and 

partial credit (Red). Considering groups that should be significantly different (with an effect possibly mediated by skill difficulty), differentiation is more efficient using 

partial credit in 11/12 trials. Amongst successful trials, sample size required for significant differentiation in 90% of trials was reduced by between 15-39% within 

ASSISTments data (M = 23.0 SD = 8.8), and between 18-68% in Cognitive Tutor data (M = 42.0, SD = 21.6). Binary credit was found to be more successful at differentiating 

between groups within one trial of Cognitive Tutor data, for “Combining Like Terms” (Top Right). 
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METHOD VALIDATION 

1.1 Validity of Partial Credit Metric 
The partial credit algorithm used in the present work and derived 

in [9] was developed by two of the leading members of the 

ASSISTments team that are experienced math teachers and 

domain experts with strong knowledge of how students interact 

with the rich tutoring features of ASSISTments. The use of partial 

credit makes sense to most teachers and has been suggested as a 

more robust measure of student learning in previous work [8]. 

From an expert’s point of view, partial credit scoring is logical 

and sound. Does it follow that the approach is also beneficial to 

data mining endeavors? As data miners commonly predict student 

knowledge without actually knowing ground truth, this question is 

difficult to answer directly.  

As binary credit is the most commonly accepted metric in learner 

modeling, it is possible to compose “ground truth” for each 

student by averaging binary credit predictions. It is then possible 

to compare partial credit and binary scoring in relation to this 

“ground truth” when predicting student knowledge. 

An analysis testing the validity of partial credit as a metric was 

conducted on students that had completed at least 30 

ASSISTments Skill Builders and likewise, on students that had 

completed at least 30 Cognitive Tutor skills (both from the 

originally sourced datasets). For students that completed more 

than 30 Skill Builders or Cognitive Tutor skills, 30 were randomly 

selected from that student’s logged data. As with earlier trials, 

only the first three skill items were considered within each Skill 

Builder or Cognitive Tutor skill. The resulting ASSISTments 

dataset included 2,206 students participating in at least 30 Skill 

Builders, while the resulting Cognitive Tutor dataset include 327 

students participating in at least 30 skills. These datasets are 

available at [16] for additional reference. Binary credit was 

collected from a random selection of 15 Skill Builders and 15 

Cognitive Tutor skills to represent “ground truth” knowledge. 

Then, partial and binary credit were tested and compared within 

the remaining 15 Skill Builders and 15 Cognitive Tutor skills in 

an attempt to predict ground truth.  This process was conducted 

using five-fold cross validation. Prediction accuracy across the 

five folds was averaged to establish an overall prediction 

accuracy.  

As it is difficult to attain robust trends from a single run of this 

procedure, the process was repeated 100 times. Results for 

average R2 and RMSE of predictions are presented in Figure 3. 

Not surprisingly, as the number of sampled Skill Builders (Left) 

or Cognitive Tutor skills (Right) increased, prediction accuracy 

increased. Partial credit and binary credit showed similar 

predictive capacity within ASSISTments data. When sampling 

few Skill Builders, partial credit had slightly better capacity for 

prediction. As more Skill Builders were sampled, the capacity for 

prediction of binary credit increased. These trends were 

reasonable, as “ground truth” was defined as the average of binary 

predictions. However, it is clear that the predictive capacity of 

partial credit was less powerful in the Cognitive Tutor dataset. 

This finding provides theoretical support for the notion that partial 

credit definitions may be system specific and may not generalize 

well to other platforms, especially when predicting across a large 

number of skills. 

 

       

Figure 3.  R2 (top) and RMSE (bottom) of predictions of student knowledge considered using different numbers of ASSISTments 

Skill Builders (Left) and Cognitive Tutor skills (Right) through a resampling (with replacement) process.
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Type I vs. Type II Error Tradeoff 
To mirror the validation check in previous work [19], a final 

analysis was conducted to verify that the observed reduction in 

Type II error made possible by partial credit (i.e., smaller 

sample sizes required to differentiate between discretized 

groups) was not linked to an increase in Type I error.  When 

group differences are not actually significant, maintaining a 

significance threshold of p < .05, Type I error should equal 5% 

(i.e., the alpha value). To verify this concept for each skill, null 

trials were simulated by randomly selecting students 

(disregarding performance level) to establish homogenous 

groups of students with no expected significant difference. P-

values were collected from 5,000 trials for each scoring metric, 

following the resampling methodology presented in Section 3.3.  

Example skills from ASSISTments and Cognitive Tutor are 

shown with the percentage of trials claiming significantly 

different samples charted in Figure 4. The metrics show similar 

and nondescript noise around the alpha value, suggesting that 

while partial credit allows for more efficient group 

differentiation, it does not significantly inflate Type I error, as 

observed in previous work [19]. 

 

 
Figure 4. Type I error within an ASSISTments skill (Top) 

and a Cognitive Tutor skill (Bottom) using Binary Scoring 

(Blue) and Partial Credit (Red). These two measures show 

natural noise around the alpha value, α = 0.05, suggesting 

that while partial credit typically allows for more robust 

group differentiation, it does not significantly influence Type 

I error. 

DISCUSSION  
This work sought to extend previous research on the efficiency 

and reliability of partial credit when used for group 

differentiation [19]. Using datasets from ASSISTments and 

Cognitive Tutor – Algebra, algorithmically defined partial credit 

was compared to traditional binary scoring when detecting 

significant differences between discretized groups of student 

performance levels.  A resampling method was used to 

determine the sample sizes required to reach a threshold at 

which 90% of trials would report high performing and low 

performing students was significantly different (p < .05).  This 

method was employed across six skills per platform in an 

attempt to determine if the magnitude of observed benefits for 

partial credit scoring was correlated with skill difficulty. In 

eleven out of twelve trials, partial credit proved more efficient 

than binary scoring, requiring smaller samples to reach reliably 

significant group differentiation. These findings were mediated 

by skill content but did not appear to be directly linked to the 

difficulty of skills. 

It is possible that although partial credit scoring allowed for 

more efficient group differentiation in the majority of cases, the 

algorithm behind the metric could be improved to enhance the 

magnitude of this effect even further. For instance, previous 

work has shown that while definitions of attempt penalization 

within partial credit algorithms are more sensitive than 

definitions of hint penalizations [8], attempts do not necessarily 

help to significantly differentiate between groups [10]. Thus, the 

variables that combine algorithmically to form partial credit may 

be critical to the scoring process while not as important in 

practice.  Further, it should be noted that the definition of partial 

credit presented herein was originally conceived for data mining 

within ASSISTments dataset. Generalizability to Cognitive 

Tutor data was not perfect, with the metric showing success in 

only five out of six skills. This may suggest that definitions of 

partial credit are somewhat system specific and should be 

tweaked to adequately suit other systems.   

It is also important to note that regardless of scoring metric, the 

threshold for reliable group differentiation was achieved in all 

skills with 182.3 students on average (SD = 231.3), using only 

the first three data points for each student.  While this is likely 

due in part to the distinct nature of groups split by performance 

level, it also speaks to the validity of using fewer items enriched 

with assessment variables in situations like posttests.  

In experimental data such as that investigated in [19], partial 

credit scoring has clear potential to reduce the cost of running 

randomized controlled trials. However, the present work 

suggests that the benefits of partial credit extend to the EDM 

community. At scale, partial credit could be used to reduce the 

processing time required for building individualized learner 

models that attempt to predict student performance or 

proficiency. In any realm, minimization of the number of items 

required to observe significant effects translates to saved money 

and saved time.  

LIMITATIONS & FUTURE WORK 
As touched on in [19], a known limitation of this work is that 

there are mathematically possible situations in which partial 

credit can underperform binary scoring. This is another possible 

explanation for why binary credit was more efficient at 

differentiating between student performance levels in the 

context of the Cognitive Tutor skill “Combine Like Terms.” T-

tests result in greater significance when homogenous groups 

have large mean differences. As partial credit makes groups 

appear more homogenous by reducing within group variance 

while simultaneously adjusting group means, higher efficiency 

in group differentiation may be attained by binary scores in 

skewed datasets. For instance, Table 8 examines two examples 

in which between-group (A & B) comparisons of scoring 

metrics are assessed using independent samples t-tests. Example 

1 looks quite similar to the findings for eleven out of twelve 

skills in the present work, while Example 2 reveals a scenario  
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Table 8. The potential for Partial Credit to outperform Binary Scoring (Example 1) and the reverse (Example 2) 

Example 1  Example 2 

Binary Scoring Partial Credit Binary Scoring Partial Credit 

A B A B A B A B 

1 1 1 1 1 1 1 1 

1 0 1 0.1 1 0 1 0.6 

1 1 1 1 1 1 1 1 

0 0 0.5 0.3 0 0 0.2 0.3 

0 0 0.8 0.2 0 0 0.5 0.2 

0 0 0.3 0.8 0 0 0.3 0.8 

t = 0.53 

p = 0.60 

t = 0.96 

p = 0.36 

t = 0.53 

p = 0.60 

t = 0.08 

p = 0.94 
 

much like that for the twelfth  skill  in  which binary  scoring 

outperforms  partial credit, resulting in a lower p-value.  

As noted in the Discussion, it is also possible that 

algorithmically defined partial credit may be highly system 

specific and may not generalize with strong validity. Future 

work should examine the sensitivity of such definitions and how 

generalizability can be improved. Future work should also 

assess potential avenues for using group differentiation within 

learner models to predict student mastery (i.e., groups that will 

reach mastery vs. those that will not).  Implications for learner 

modeling suggest that the resampling approach presented herein 

could be used for successful latent group differentiation, which 

may enhance or even outperform techniques like Knowledge 

Tracing 

CONTRIBUTIONS 
The work presented herein extended previous research detailing 

the benefits of partial credit scoring within Intelligent Tutoring 

Systems and online learning platforms, in the context of 

enhanced efficiency and reliability when differentiating between 

user groups. This work extended a previously established 

resampling approach to consider group differentiation using 

partial credit in broader skill contexts and across platforms. It is 

possible that this approach could be applied to EDM practices to 

reduce sample sizes or the number of items required to build 

learner models that reliably detect skill mastery. 
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ABSTRACT 

Wheel-spinning is the phenomenon where students, in spite of 

repeated practice, make no progress towards mastering a skill. 

Prior research has shown that a considerable number of students 

can get stuck in the mastery learning cycle--unable to master the 

skill despite the affordances of the educational software.  In such 

situations, the tutor’s promise of “infinite practice” via mastery 

learning becomes more a curse than a blessing.  Prior research on 

wheel spinning overlooks two aspects: how much time is spent 

wheel spinning and the problem of imbalanced data.   This work 

provides an estimate of the amount of time students spend wheel 

spinning.  A first-cut approximation is that 24% of student time in 

the ASSISTments system is spent wheel spinning.  However, the 

data used to train the wheel spinning model were imbalanced, 

resulting in a bias in the model’s predictions causing it to 

undercount wheel spinning.  We identify this misprediction as an 

issue for model extrapolation as a general issue within EDM, 

provide an algebraic workaround to modify the detector’s 

predictions to better accord to reality, and show that students 

spend approximately 28% of their time wheel spinning in 

ASSISTments.  

Keywords 

Wheel-spinning; Precision; Recall; Intelligent Tutoring Systems 

INTRODUCTION 
Mastery learning has been implemented and applied in intelligent 

tutoring systems (ITS) in a variety of contexts. One common 

foundation builds on the ACT-R theory, which assumes that 

procedural knowledge of a skill can be acquired through repeated 

problem solving of what is initially declarative knowledge, 

causing it to compile into production rules for a procedural 

representation [1]. The rationale of mastery learning is also well 

supported by the theory of “learning-by-doing,” which refers to 

the capability of learners to improve their efficiency by regularly 

repeating the same type of action via practice [2]. The use of 

mastery learning is driven by the desire to provide students 

efficient practice, by avoiding giving them too many problems to 

solve, which could waste valuable learning time [3] and possibly 

jeopardize student motivation to learn, but simultaneously 

ensuring there are not too few practice problems, which might 

leave students poorly prepared for learning future content [4] due 

to the lack of mastery. 

An application of mastery learning is that students are presented 

as many problems as needed to master the skill. Consequently, the 

system keeps giving the student more problems to practice in the 

hope that he might utilize these new opportunities to master the 

skill. The student however could keep failing to learn the skill, 

which triggers the system to present even more problems to the 

student.  Thus, the student can possibly become trapped in the 

mastery learning cycle if he fails to achieve mastery.  We term 

this phenomenon “wheel-spinning”, analogous to a car stuck in 

mud or snow; its wheels are spinning rapidly and there is the 

illusion of progress, but it is not going anywhere. Similarly, the 

tutor is presenting students with many problems to solve and there 

is the appearance of productive work, but the students are not 

making progress towards mastery. 

Prior work [5] introduced the concept of wheel spinning, which 

describes the phenomena that students can not master a skill in a 

timely manner. Using data from two ITS called the Cognitive 

Algebra Tutor [13] and ASSISTments [14], they analyzed the 

severity of wheel-spinning, and build a logistic model to predict 

students wheel spinning. In general, the model provided good 

prediction accuracy with an AUC of 0.88 [6]. However, since the 

model was trained based on imbalanced data (most students 

master a skill rather than wheel spinning), the model has high 

false negative rate, which means wheel spinning cases are 

relatively more likely to be mispredicted as mastery cases. 

Therefore, when we apply this model to indeterminate cases 

(which we can not label wheel spinning or mastery based on the 

given data), the estimated rate of wheel spinning is likely an 

undercount. This paper addresses the undercount, and further 

estimates how much time students spend wheel spinning.     

DATA SET 
In this paper, we used the similar data set used in [6] from 

ASSISTments. ASSISTments is a web-based computer tutor, 

primarily used for middle-school math education (approximate 

ages 12 to 15). This data set contains information from 5997 

students chosen at random, who used ASSISTments during the 

time period of September 2010 to July 2011. The students 

completed a total of 208,328 math problems during this time 

period. These students were primarily from the northeast United 

States. We have student self-reported ages, and 75% of the 

students asserted they were 12 to 15 years of age on January 1, 

2011. Since the students spread across a wide range of grades, 

they solved problems including a large range of skills as well. The 

problems cover 190 math skills, such as Equation-Solving-More-
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Than-Two-Steps, Area-Irregular-Figure, etc. Since we have 

access to the ASSISTments system’s database, we can reach fine-

grained information, such as every action the student made while 

he was solving the problem. This allows us to analyze the 

relationship between wheel-spinning and non-productive 

“learning” behaviors induced by these fine-grained data. 

This work retains the initial definition of wheel spinning [5] of 

failing to master a skill within 10 practice opportunities. We 

define mastery as getting three problems correct in a row.  This 

threshold of mastery is rather low, and so these results are a lower 

bound on wheel spinning.  Some students practiced fewer than 10 

problems without reaching mastery.  It is not obvious whether 

these students would master the skill or not, and we categorize 

them as “indeterminate.”  Table 1 shows the number of student-

skill pairs in each category.   

Note that a student could wheel spin on adding fractions but 

master multiplying decimals. Therefore, we speak of wheel 

spinning or mastering a particular skill by a student.  Thus, when 

characterizing the amount of wheel spinning, our analysis is in 

terms of student-skill pairs.     

Table 4. Breakdown of student performance by mastery type 

Category Mastery Indeterminate Wheel-spin 

Number of 

student-skill 

pairs 

25449 

(55.6%) 

17528 

(38.3%) 

2810 

(6.1%) 

 

 
 

Figure 3.  Number of indeterminate student-skill pairs at each 

PO 

Since wheel spinning is trivial to predict for cases where we 

can observe either wheel spinning or mastery, we are more 

interested in the distribution of indeterminate cases.  Figure 1 

shows frequencies of student-skill pairs at a certain number of 

practice opportunities of indeterminate cases. Clearly, the larger 

the PO is, the fewer observations we have. Students in the 

indeterminate group tend to have fewer PO; the majority of 

students did no more than 5 problems. It is interesting that 

students seem to give up relatively rapidly on a problem set.   

Overall, there is a large imbalance of more mastery cases than 

wheel spinning cases.  However, this imbalance interacts with the 

number of practice opportunities (PO) a student has had on a skill, 

as shown in Figure 2. The number of student-skill pairs 

considered wheel-spinning does not change with PO, since by 

definition a student must reach PO 10 in order to be categorized as 

wheel spinning.  The reason the number of wheel spinning cases 

is constant is that when we observe a sequence as either wheel 

spinning or mastery, we label all PO in the sequences with that 

label.  Since 10 PO are required for wheel spinning, all 10 bins 

have the same quantity.  However, students can master a skill 

after 3 PO.  Therefore, the number of student-skill pairs still 

working towards mastery decreases rapidly as PO increases. 

 
Figure 4.  Number of wheel spinning and mastery problems at 

each PO 

REVISIT THE WHEEL SPINNING 

PREDICTIVE MODEL 

Model Performance Metrics 
In this paper, we reused the model provided in [7]. The model is 

trained based on determinate cases (mastery and wheel-spinning 

cases), and then it is applied to indeterminate cases to make 

predictions and estimate the rate of wheel spinning.  The model 

was trained using three fold cross validation. This model has 

strong performance statistics on the test set of unseen students:  

R2 of 0.4 and AUC of 0.88.  However, its precision and recall are 

reasonable but less strong: 0.76 and 0.53, respectively.  We now 

develop an argument to show as a consequence of the precision 

and recall statistics, the predictive model undercounts the amount 

of wheel spinning on the indeterminate cases.   

Evaluation of the Model with Precision and 

Recall 
In a classification model, the precision of a model, P, is the 

number of true positives, TP, divided by the total number of cases 

predicted as positive, PP.  A model’s recall, R, is the number of 

true positives divided by the total number of cases that are 

actually positive, +.   As a consequence, we have the formulas 

P  = TP / PP   (1) 

R = TP / +   (2) 

A model’s precision is how selective it is.  When it predicts the 

category will occur, how often is it right?  Recall measures how 

comprehensive a classifier is.  Of the actual cases, how many can 

it detect?  Clearly, there is trade off between precision and recall.  

A classifier could be very cautious and only make a positive 

prediction when it was very certain, resulting in a high precision 

but low recall.  Conversely, a classifier could categorize 

everything as an instance of the category, achieving perfect recall 
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but (presumably) low precision.  The precision and recall of wheel 

spinning and mastery are shown in Table 2. 

Table 5.  Precision and recall for Mastery and wheel spinning 

Category Mastery 
Wheel 

spinning 

Precision 88.3% 75.6% 

Recall 95.3% 52.5% 

 

This model has a high precision and recall for predicting mastery. 

However, the precision and recall of wheel spinning is relatively 

low. Wheel spinning’s precision of 75.6% means that about one 

out of four of the cases that is predicted as wheel spinning is 

actually mastery. Recall of 52.5% means that the model can only 

capture successfully about half of the WS cases.  

The low recall of WS is not surprising if we look at the 

distribution of data set shown in Table 1.  Mastery cases occupy a 

large portion. Under such a circumstance, it is understandable that 

the model tends to predict cases as mastery to reduce the 

prediction error—the goal of the model fitting process. 

 

Figure 5.  Precision and recall for Wheel Spinning prediction 

More specifically, we analyzed precision and recall at different 

POs. Figure 3 and Figure 4 show the precision and recall of 

wheel-spinning and mastery of the wheel spinning prediction 

model, both disaggregated by PO.  Interestingly, precision and 

recall both improve for problems in the wheel spinning category 

as the model observes the student making more practice 

opportunities on the skill.  This explanation makes intuitive sense:  

as the model acquires more data, it is better able to detect when a 

student will wheel spin.  Interestingly, precision and recall of the 

Mastery category both decrease with additional observations of 

the student performing the skill.  At first, this situation seems 

paradoxical, until one consider the distribution of Mastery vs. 

Wheel Spinning in Figure 2.  Initially, Mastery is the majority 

class.  Its relative advantage begins to slip after PO 3, and by PO 7 

it has achieved numerical parity with Wheel Spinning.  After PO 

7, Wheel Spinning is the majority class.  As Mastery becomes less 

and less dominant in the data set, its predictive accuracy 

decreases. 

 

Figure 6.  Precision and recall for Mastery prediction 

Implications of imbalances in classifier 

accuracy  
Consider the relationship between the precision and recall and the 

number of true positives.  From a standpoint of precision, the 

number predictions made multiplied by the precision is equal to 

the number of correct predictions.  That is: 

 P * PP = TP  (3) 

Conversely, we can define the number of true positives using 

recall.  Specifically, the number of actual occurrences of a 

category, multiplied by the model’s recall, provides the number 

correct predictions of that category.  That is: 

 R * + = TP (4)   

Since equations 3 and 4 both have the number of true positives on 

their right-hand side, we can set them equal to each other: 

 R * + = P * PP (5) 

Dividing both sides by R and rearranging we get: 

 + = PP * (P / R) (6) 

In other words, the number of positive examples in a data set is 

equal to the number of predicted positives, multiplied by the 

precision over recall.  A few points of discussion.  First, it may 

seem conceptually odd to need to compute the number of positive 

examples in a data set, as it is normally countable directly from 

the data.  However, for our problem we have a large number of 

indeterminate cases where we are unable to observe what their 

true label would be, and we need to infer it.  More broadly, 

applying behavioral classifiers outside of the labeled training data 

encounters this same problem:  how many instances are there 

really in the data set? Such a situation would arise when 

attempting to apply a model trained on one system to a second 

system. The second observation is that the (P/R) term in Equation 

6 can be thought of as a normalizing constant for reweighting the 

data.  The number of instances predicted to be positive is adjusted 

by P/R.  Sometimes this adjustment will increase the number of 

instances and other times it will decrease the number of instances.  

In either case, this adjusted number of instances is a better 

estimate of the number of positive examples in the data than the 

number of predicted positives from the classifier.   

An intuitive way to reweight the prediction results is to directly 

use the precision and recall ratios shown in Table 5 to compute 

the P/R ratio.  However, we have additional information in that 
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we know the relative counts of Wheel Spinning and Mastery 

change dramatically with PO.  Therefore, rather than applying a 

global reweighting term of 0.756/0.525 for Wheel Spinning and 

0.883/0.953 for Mastery, we instead create more fine-grained 

reweightings based on PO.    

Figure 5 shows the P/R ratio for both categories broken down by 

PO.  Note that for a low number of PO, the P/R ratio for wheel 

spinning is noticeably higher than 1.  In other words, early on in 

the sequence many wheel spinning cases are miscategorized as 

Mastery by the classifier, and there is a systematic undercount in 

the number of Wheel Spinning students.  In contrast, the Mastery 

category has a P/R ratio of approximately 1.0 throughout its 

range, only rising noticeably above 1.0 on PO 9 and 10.  Thus, 

Mastery cases are undercounted late in the sequence of problem 

solving. 

 

Figure 7.  Ratio of precision/recall for Wheel Spinning and 

Mastery 

REANALYSIS OF PREDICTION RESULTS 

FOR COMPUTING AMOUNT OF WHEEL 

SPINNING 
We now turn our attention to first reestimating past results using 

the reweighted data.  Then we focus on estimating the time spent 

wheel spinning using both the straightforward approach of using 

the classifier results as-is (i.e., the PP value) vs. using the 

reweighted PP * (P/R) value.   

Estimating amount of mastery 
By applying the predictive model to indeterminate cases, we can 

get predicted category of these cases.  Since the ratio of precision 

and recall is not very large for Mastery prediction, the 

modification of those predictions is generally a small decrement.  

However, for Wheel Spinning predictions, the P/R ratio is 

generally higher than 1, causing an increase in the number of 

predicted cases of Wheel Spinning.   

Figure 6 shows the number of indeterminate student-skill pairs 

predicted to result in Mastery.  For each PO, the bar on the left 

represents the number of cases that will result in Mastery 

originally predicted by the model.  The bar on the right for each 

PO represents the adjusted count by reweighting each student-skill 

pair by its corresponding P/R ratio.  For problems at PO 3, the P/R 

ratio for Wheel Spinning predictions was over 3, so those cases 

are weighted 3 times as heavily.  For Mastery problems, the P/R 

ratio was just under 1.0, so those counts are relatively unchanged.  

As a result of this reweighting, there is a noticeable drop in the 

estimated number of indeterminate students who will master the 

skill after 3 PO.   

For PO3 through PO6, the reweighting is pessimistic and causes 

more student-skill pairs to be categorized as Wheel Spinning than 

the model predicts on its own. At PO 7, both categories have a 

P/R ratio of approximately 1.0, so the counts are (roughly) 

unchanged.  For PO 8 and 9, since the P/R ratio of Mastery is 

larger than for Wheel Spinning, we see an increase in the expected 

number of students who Master the skill relative to the model’s 

predictions. 

 

Figure 8. Original and reweighted proportions of student-skill 

pairs predicted as resulting in mastery 

We now compute the cumulative percent of students who will 

master a skill, by assigning the indeterminate student-skill pairs to 

either Mastery or Wheel Spinning.  Figure 7 shows the result of 

this process.  The upper and lower lines are optimistic and 

pessimistic assumptions of student performance, and provide an 

absolute upper- and lower-bound on the percentage of student-

skill pairs that will result in mastery.  The upper-bound on 

mastery assumes all indeterminate students will master the skill.  

The lower-bound assumes all students will wheel spin.  Our goal 

is to better estimate mastery within that range of possible values.  

The solid green line in the middle of the graph is the result of 

applying the model’s predictions to the indeterminate data points 

(identical to the analysis in [6]).  The dashed red line represents 

using the same model predictions, but reweighting them according 

to the P/R ratio provided in Figure 5.  For example, if an 

indeterminate case was predicted as resulting in Wheel Spinning, 

we would count that as approximately 1.6 observations of Wheel 

Spinning, as that is the P/R ratio for that category for that number 

of practice opportunities.  Overall, there is not a large change in 

the expected proportion of students-skill pairs reaching mastery.  

There is a slight decrease of 2% absolute in the expected amount 

of mastery, with about 16% (shown in Figure 7) of student-skill 

pairs expected to exhibit Wheel Spinning. 

As another illustration of the impact of weighting the model’s 

output, Table 3 shows the impact on the number of indeterminate 

cases counted as mastery or as wheel spinning.  Note that no 

student-skill pair actually receives a different prediction as a result 

of the modification, the counts in the table change strictly as a 

result of reweighting the counts by P/R.  Although we are able to 

obtain more accurate counts, we are not able to more accurately 

predict any individual case as Wheel Spinning or Mastery.  Note 
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that the percentage of mastery in Table 3 (75%) differs from 

Figure 7 (84%) since Figure 7 refers to wheel spinning, mastery, 

and indeterminate cases, while Table 3 zooms in and considers 

only the indeterminate cases. 

Table 6. Estimated number (percent) of indeterminate 

student-skill pairs predicted as each category 

Category Mastery WS 

Estimation 14028 (80%) 3500 (20%) 

Modified 

Estimation 
13086 (75%) 4442 (25%) 

 

Figure 9.  Cumulative percent of student mastering the skill 

by PO.  Model estimate and reweighted estimate.   

Estimating time spent wheel spinning 
Our final analysis is to estimate the amount of time students spend 

in the wheel spinning state.  First, we examined how long students 

spent solving a problem.  Figure 8 shows the average number of 

seconds students spent on a problem, broken down by category 

(observed mastery, observed wheel spinning, or indeterminate), 

and plotted by PO.  Several trends are evident.  First, problems 

solved in skills where the student will wheel spin take 

approximately 25% longer to solve than problems solved in skills 

that the student eventually masters.  The other observation is that 

there is a sharp drop in time to solve a problem from PO 1 to PO 

2, presumably due to memory effects as students swap into 

working memory [7] the necessary procedures for solving 

problems of this type.  After PO2, there is a slight decreasing 

trend in time spent per problem across indeterminate, mastery, 

and wheel spinning student-skill pairs.  This interaction of time 

and PO illustrates the importance of using a P/R ratio conditioned 

by PO, as shown in Figure 5, as early values of PO, where the P/R 

ratio is greatest, take the greatest amount of time to solve. 

The other thing to note is that wheel spinning students spend 

much longer on skills than students who master.  First, wheel 

spinning students spend more time per problem (Figure 8).  

Second, wheel spinning students attempt many more problems on 

a skill than students who master it.  Observed wheel spinning 

requires 10 observations.  So we should expect the time spent 

wheel spinning to be substantially higher than the 16%, which the 

percent of student-skill pairs observed to exhibit wheel spinning.   

To compute time spent wheel spinning, we treated student-skill 

pairs that resulted in either wheel spinning or mastery as time 

spent in the respective state.  For indeterminate sequences, we 

compute the probability of Wheel Spinning according to the 

model for the last problem in the sequence.  Presumably the final 

PO has the most information, and provides the best estimate of 

whether the student will wheel spin or not.   We then use the P/R 

reweighting term for the final PO to reweight time spent in all of 

the problems for this student-skill pair.  This approach maximizes 

information used in making the prediction, and uses the P/R ratio 

that is associated with that model’s prediction. So if a student 

reaches PO 6 and is predicted to wheel spin, we use a ratio of 

approximately 1.1 (from Figure 5) to reweight the time spent in all 

6 POs, and do not artificially inflate the time by using the P/R 

ratio from PO 1 through 5 for this student-skill pair. 

 
Figure 10.  Average time spent on a problem 

 

Figure 11.  Estimated time spent wheel spinning for 

indeterminate cases 

Figure 9 provides the amount of time students spend wheel 

spinning, broken down by PO.  At PO 3, the reweighting results in 

a sharp increase in the amount of time estimated as spent wheel 

spinning.  As the P/R ratio becomes closer to 1, the reweighted 

counts and model predictions become more similar to each other.   

Table 7.  Estimated time (in number of hours and as a 

percentage) spent Mastering and Wheel Spinning 
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(84%) (76%) (72%) (56%) 

WS 
422 

(16%) 

626 

(24%) 

740 

(28%) 

1181 

(44%) 

 

After reweighting the predicted amount of time spent Wheel 

Spinning or Mastering for each student-skill pair, we computed 

the total amount of time spent wheel spinning.  Table 4 shows the 

time spent wheel spinning and mastering for our data set.  Using 

the model’s predictions as-is, we get that students spent 626 hours 

wheel spinning, or 24% of their time.  Reweighting the data 

results in that amount increasing to 740 hours, or 28% of their 

time.  Finding that over 600 hours of student time was wasted 

over a year is not a comforting thought.  Using the reweighted 

estimate, over one-quarter of student time is spent in the wheel 

spinning state.  This value is not a small number, and should be a 

focus of attention for improving the tutor. 

CONTRIBUTIONS 
This paper makes contributions to understanding wheel spinning 

and more broadly to the field of educational data mining.  Within 

the context of wheel spinning, this paper extends prior work on 

estimating the amount of wheel spinning [6].  Given the 

prevalence and breadth of wheel spinning, approximately 26% in 

the Cognitive Algebra Tutor, 16% student-skill pairs in 

ASSISTments, and over one-third in a study of the cognitive tutor 

on a non-WEIRD population [8], efforts to better understand 

wheel spinning can have a broader impact than on other constructs 

commonly studied which are typically observed on many fewer 

students.  Prior research [5, 6, 7] examined the total number of 

student-skill pairs that exhibit wheel spinning.  Such analysis is 

informative, but neglects to consider the amount of time student 

spend spinning their wheels in the mastery learning cycle.  The 

amount of time is particularly relevant given that problems where 

students are wheel spinning take somewhat longer to complete.  

Furthermore, students perform more problems in wheel spinning 

sequences than in sequences that end in mastery.  Consequently, 

students in ASSISTments wheel spin on 16% of problem 

sequences, but spend 28% of their time in the wheel spinning 

state.  The 28% would be even worse, except that some students 

who are likely to wheel spin stop doing the tutor’s exercises and 

give up on the problem set.  Realizing that much student time is 

being wasted by a commonly used computer tutor is surprising, 

and such analysis of time is rarely done, with a few exceptions 

[8]. 

The second contribution this paper makes is refining the 

understanding of a classifier for wheel spinning, and by extension, 

other classifiers used in educational data mining.  The precision, 

recall, and AUC of the previously published predictive model of 

wheel spinning are quite good.  However, looking at the 

performance in detail indicates there are systematic biases in its 

predictions, which should lead us to be cautious in interpreting its 

results.   

The final contribution of this paper is in an interesting approach of 

correcting for imbalanced data in a classifier.  The classifier is 

doing a good job for its role:  minimize its prediction error, 

possibly extended with an asymmetric loss function to penalize 

certain types of mistakes more heavily.  The classifier’s job is not 

to make the most accurate extrapolation at a coarse grain size by 

correctly estimating the total number of times a certain behavior 

occurs.   As a result, when a classifier is used to extrapolate to a 

new dataset and estimate the rate of occurrence of a phenomenon, 

there is a mismatch between that mission and its goal.  As a 

simple example, for a problem with 99% positive examples, a 

very accurate classifier would categorize all examples as positive.  

It would not, however, be useful for extrapolating population 

statistics as it would claim that 100% of the data were positive 

examples when we know that is not true.  Although we know the 

classifier is overpredicting the majority class, we are not sure 

which specific instances are being overcounted.   

This work provides a means for reweighting the data to cause the 

classifier to better-align its predictions with known counts in the 

data.  We are able to perform this reweighting by taking 

advantage of the relationship between precision, recall, and the 

known base rates.  In addition, we leverage the strong relation 

between practice opportunity and precision/recall.  Consequently, 

we are able to make better predictions about collections of data 

points, and better allocate student time between wheel spinning 

and mastery states.  However, this algebraic trick does not allow 

to modify our prediction about any specific student-skill pair and 

increase the classification accuracy of the detector.  This apparent 

conundrum, and separation of the roles of behavioral models into 

predictions of individuals and categorizing large numbers of trials 

is a contribution to the field of educational data mining1: simply 

extrapolating model predictions can lead to erroneous claims 

about the amount of a behavior or the time spent in that behavior.  

In fairness, the change for this study was moderate in scope:  the 

amount of time spent wheel spinning is approximately 28% of 

total time rather than 24%. However, for detectors with weaker 

performance metrics, this difference could be much larger. 

FUTURE WORK AND CONCLUSIONS 
The most obvious line of future work is the creation of a stronger 

classifier for wheel spinning, as well as for other detectors of 

learner behavior and affect.  The wheel spinning detector has 

strong performance metrics (on test-set data):  AUC of 0.88, R2 of 

0.4, precision of 0.76 and recall of 0.53 [6].  In spite of those solid 

metrics, there is a notable problem with extrapolation due to the 

skew between precision and recall.  A naïve approach would be to 

simply alter the loss function [10] to balance precision and recall.  

However, this approach would reduce the predictive accuracy of 

the model, its sine qua non. Also, some algorithms in AI domain 

also provides possible solutions [11, 12], but those approaches 

modify the classifier’s predictions, so there is a loss in accuracy of 

predictions. On the other hand, semi-supervised learning is also a 

technique we would like to try in the future. [15] 

The second area is to analyze whether student characters that 

influence wheel-spinning between determinate cases and 

indeterminate cases are similar.  In this paper, we assume that the 

model built on determinate cases also applies to indeterminate 

cases. However, whether this assumption holds should be 

validated. In the future, more data (previous information) about 

students in both determinate cases and indeterminate cases should 

be gathered, and analyzed for comparison of similarity between 

the two groups. 

                                                           
1 We suspect we are not the first to reweight our data in this 

manner, but none of us are experts in information retrieval.  The 

second author of the paper developed the idea independently 

while thinking about the classifier’s performance metrics, and 

the first author developed an explanation for this paper and did a 

quick literature search to no avail.  We would appreciate any 

pointers to the literature of making use of this approach to 

enable a model to better extrapolate.   
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The third area of research is to reduce the amount of time spent 

wheel spinning.  Wheel spinning consumes a large amount of 

student time, typically in a block spent working on a particular 

topic.  Beyond being ineffective for learning, it is presumably 

disengaging for learners as well.  The problem is that most 

obvious interventions have been tried, as ITS designers attempt to 

construct systems from which students can learn.  Analysis of 

how much wheel spinning could be reduced by ensuring students 

understood their prerequisite skills reveals a modest decrease [10].  

Thus, there is a need for effective strategies for reducing wheel 

spinning.  One possible strategy is a strong detector capable of 

quickly detecting that a student is likely to wheel spin, and simply 

stop providing her/him problems on the topic.  This creation of an 

escape mechanism from the mastery learning cycle would reduce 

time spent wheel spinning, and couple with instruction by a 

human teacher or tutor, could possibly be an effective 

intervention.   

The fourth area of future work is further thinking about the 

different uses of predictive models.  This work examines two: 

predicting individual cases and extrapolating the model to an 

aggregate group, and identifies an issue with undercounting the 

minority class for analyzing the impact of a behavior.  Are there 

other crucial differences between these two uses beyond the one 

noted in this paper?  Is there a third type of use of models that has 

different properties entirely? 

In conclusion, this paper extends what is known about wheel 

spinning.  We have found that students spend approximately 28% 

of their time in a wheel spinning state.  More interesting is how 

we calculated this number:  reweighting the data to modify the 

impact of the model’s predictions.  Thus, this paper not only 

extends our understanding of the common and detrimental 

behavior of wheel spinning, but improves our methodological 

sophistication for understanding behavioral detectors.   
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ABSTRACT 

Knowledge tracing (KT) is well known for its ability to predict 

student knowledge. However, some intelligent tutoring systems 

use a threshold of consecutive correct responses (NCCR) to 

determine student mastery, and therefore individualize the amount 

of practice provided to students. The present work uses a data set 

provided by ASSISTments, an intelligent tutoring system, to 

determine the accuracy of these methods in detecting mastery. 

Study I explores mastery as measured by next problem 

correctness. While KT appears to provide a more stringent 

threshold for detecting mastery, NCCR is more accurate. An 

incremental efficiency analysis reveals that a threshold of 3 

consecutive correct responses provides adequate practice, 

especially for students who reach the threshold without making an 

error. Study II uses a randomized- controlled trial to explore the 

efficacy of various NCCR thresholds to detect mastery, as defined 

by performance on a transfer question. Results indicate that higher 

thresholds of NCCR lead to more accurate predictions of 

performance on a transfer question than lower thresholds of 

NCCR or KT.  

 

Keywords 

Intelligent Tutoring System, Knowledge Tracing, Mastery 

Learning. 

INTRODUCTION 
 

Intelligent tutoring systems are known for their ability to 

personalize the learning experience for students. One way that 

learning is individualized is by providing just the right amount of 

practice to meet the student’s needs. Determining the correct 

amount of practice is critical because over-practice might bore 

students and take an un-necessarily long time, while under-

practice might not provide enough opportunities for a student to 

learn a skill. To determine the correct amount of practice, systems 

must identify the point in time when students have learned the 

skill, otherwise referred to as reaching mastery. To predict this 

latent variable, mastery, systems must rely on student 

performance.  

 

Defining mastery may vary between systems. One measure of 

mastery includes next problem correctness, another is 

performance on a transfer question, and yet another is 

performance on a delayed retention test. Some systems rely on 

knowledge tracing (KT), others use a predetermined number of 

consecutive correct responses (NCCR).  In each case, mastery 

status is used by the system to determine the end of an 

assignment. 

 

KT is known to be highly accurate at predicting next problem 

correctness [4]. By providing the probability that the student is in 

the learned state, knowledge tracing can also be used to predict, or 

detect mastery.  Fancsali, Nixon and Ritter [4] examined the 

prevalence of two types of errors introduced when using various 

KT thresholds to establish mastery. False positives occur when a 

student without knowledge has been judged mastered, and false 

negatives occur when a student receives additional practice 

despite having the knowledge. Different mastery thresholds will 

affect the relative frequency of these errors. It was determined that 

using a probability of being in the learned state of 95% is a 

conservative trade-off between over-practice (false negatives) and 

avoiding premature mastery judgment (false positives).   

 

One disadvantage to KT is that it requires a substantial amount of 

data to learn parameters and to fit a model. Therefore for new 

skills typical parameters would have to be used, or an alternative 

is needed until enough data is collected to fit KT. Additionally, 

KT may not be particularly effective in the first few attempts 

when student data is limited as it is very susceptible to initial 

parameter values. Therefore a more naïve approach that is equally 

accurate may be more appropriate.  Finally, KT can produce 

several sets of parameters that equally fit the data. However, 

interpreting these parameters is not always meaningful. Beck [2] 

refers to this as the identifiability problem. Calculating the 

probability that the student is in the learned state (“probability of 

learned”) is particularly vulnerable as high guess or slip 

parameters may impact this value. 

 

There are some systems that use a predetermined number of 

consecutive correct responses (NCCR) to detect mastery. Early 

on, Khan Academy [5, 9] used ten correct as the criteria for 

assignment completion. Recently [6] this has been reduced to five 

questions plus a combination of item difficulty and spaced 

repetition. Another well-known system, ASSISTments [7], uses 

three-right-in-a-row as the default setting for assignment 

completion and then additional spaced practice (ARRS). 

However, teachers can adjust this setting as desired. Prior research 

suggests that three-right-in-a-row may be an accurate threshold to 

detect mastery if that threshold is met early in a problem set 

[2].  Beck found that when the threshold is met later in the 
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sequence, students are often unsuccessful on a delayed 

reassessment. This suggests that a blanket default setting across 

all problem sets and all sequences may be flawed.  

 

One disadvantage to a consecutive correct threshold is that the 

“slips” as defined by KT have significant impacts on practice 

opportunities. A slip is defined as an incorrect response by a 

student who is predicted to be in the learned state. Typical slip 

parameters in KT are between 0% and 10% [1]. This suggests that 

on average, 5% of students who in fact know a skill will answer a 

question incorrectly. When using NCCR to determine mastery, 

students who slip are penalized heavily, requiring them to 

complete additional unnecessary practice.  

 

Accurately predicting or detecting mastery status is critical to 

intelligent tutoring systems, because the amount of practice 

provided to students depends on this. An overly cautious 

prediction will lead to unnecessary practice (false negatives), 

while less strict criteria will not provide enough (false positives). 

We are investigating whether additional attempts, due to a higher 

mastery threshold, will lead to increased accuracy in detecting 

mastery while not increasing false negatives. False negatives are 

challenging to detect using performance data. However, 

considering the amount of additional practice required for 

different NCCR thresholds will shed some light on the impact of 

false negatives. For example, one system that requires 10 correct-

in-a-row (10-CCR), might be able to identify mastery with 95% 

accuracy, while another that requires 5 correct-in-a-row (5-CCR) 

reaches 80% accuracy. If the 10-CCR requires students to 

complete on average 8 questions more than the 5-CCR, we must 

consider whether that degree of accuracy is worth the time spent 

by students.  

Therefore, Study I of the present study leverages data generated 

by an intelligent tutoring system to explore the ability of NCCR 

and KT to detect mastery. Mastery will be measured by next 

problem correctness. Additionally, an incremental efficiency 

analysis will also be presented that sheds light on the number of 

additional questions students must answer to reach a given 

threshold.  

Next problem correctness is arguably a weak measure of mastery 

as slips are possible. A measure of more robust learning is 

performance on a transfer task [10]. Therefore, in Study II, a 

randomized-controlled trial was conducted to compare the 

accuracy of different potential thresholds of number of 

consecutive correct responses. This data was then used to further 

explore KT predictions, compared to NCCR in an attempt to 

determine which method should be used in intelligent tutoring 

systems who rely on mastery to determine amount of practice.  

2. METHODOLOGY (Study I) 
ASSISTments is an intelligent tutoring system that is widely used 

by students, predominantly in elementary and middle school, and 

relies on NCCR. The focus problem sets are considered skill 

builders, which are created to provide individualized practice to 

students. Specifically, students must continue to complete 

problems until a set number of consecutive problems are 

answered correctly. Presumably, the threshold has been selected 

because the system is predicting that the student has mastered the 

skill and no longer needs practice.  Next problem correctness 

provides a measure of accuracy of this mastery determination. It is 

important to note ASSISTments provides an optional automatic 

reassessment of skills with spaced practice to better detect 

mastery. However, this data was not available and therefore was 

not considered for the present study.  

Problem logs generated during the 2012-2013 school year using 

ASSISTments were used for the current study. From the original 

data set, we selected problem sets with the mastery setting as 5-

CCR.  Using a threshold setting of five consecutive questions 

allows us to analyze student responses on the fourth and fifth 

questions to explore the accuracy of 3-CCR.  We also limited the 

problem sets selected to those with at least 50 problem logs to 

ensure enough data to fit KT.  This resulted in data from 395 

students who completed 25 problem sets, generating 5,928 rows 

of data. NCCR is attached to assignment, therefore we care about 

the number of student-assignment pairs when it comes to an 

NCCR relative analysis.  If a student completed more than one 

assignment, they were used multiple times. In this data set, the 

number of student-assignment pairs is 698. The data set can be 

accessed online [13]. 

 

To examine NCCR, strings of student responses were analyzed 

specifically looking at the two actions immediately following the 

first string of three consecutive correct responses. In consideration 

of Beck’s [2] findings, that students who reach the mastery 

threshold late in a problem set often fail a delayed retention test, 

students who answered the first three questions correctly were 

separated from those who completed at least one question 

incorrectly before answering three correct in a row. We calculated 

the percent of students falling into each of the four response 

combinations (see Figure 1): fourth question incorrect and fifth 

question incorrect (A), fourth question incorrect and fifth question 

correct (B), fourth question correct & fifth question incorrect (C), 

and fourth question correct and fifth question correct (D).   

 

 

 
Figure 1. Potential student response combinations.  

 

To explore KT, we fit a model, and for each skill we generated the 

four parameters of guess, slip, learn and prior. These parameters 

were then used to calculate the probability that the student was in 

the learned state at each student action step. Looking specifically 

at the first time the student answered three consecutive questions 

correctly, we calculated the percentage of students who had a 

probability of being in the learned state (at least 95%) at the third, 

fourth and fifth action. Again, students were separated into those 

who answered the first three questions correctly and those who 

answered at least one question incorrectly prior to the three 

consecutive correct responses. It is important to note that with as 

few as 50 problem logs for some skills, some of the KT 

parameters may be compromised.  
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RESULTS (Study 1) 

NCCR 
In examining the fourth and fifth action after a string of three 

consecutive correct responses, the percentage of students with 

each response combination was calculated.  For all 285 student-

assignment pairs who correctly answered the first three 

consecutive questions correctly (see Table 1), 80.0 % also 

answered the fourth and fifth questions correctly. This could be 

interpreted as the accuracy measure of a threshold of three 

consecutive correct responses as it seems to confirm the mastery 

classification according to NCCR.  18.2% of students answered 

either the fourth or fifth question correctly but the other 

incorrectly. Assuming NCCR is accurate at detecting mastery, 

these students could be considered to have slipped on that 

question. However, these students could also represent the false 

positive error rate, meaning they were considered mastered by the 

threshold of three, yet did not learn the skill as demonstrated by 

their incorrect response. The 1.8 % of students who answered both 

the fourth and fifth questions incorrectly could represent the error 

rate of NCCR as they suggest an inaccurate detection of mastery 

by NCCR.  

 

Table 8. For students who answered three consecutive 

questions correctly without an error, percentages of students 

with each response combination on the fourth and fifth action 

are presented. 

3 Consecutive No Errors Fourth Question 

 

Fifth Question 

 Incorrect Correct 

Incorrect 1.8% (5) 9.8% (24) 

Correct 8.4% (28) 80.0% (228) 

 

For all 309 student-assignment pairs who had at least one 

incorrect response in the current assignment prior to obtaining 

three right-in-a-row, the percentages of answer combinations on 

the fourth and fifth questions were also computed (see Table 

2.)  While 75.1% of students answered both the fourth and fifth 

questions correctly, 4.2% answered them both incorrectly. This 

suggests that for students who did not answer the first three 

questions correctly, this threshold may be too lenient as 25% of 

students were classified as mastered went on to answer at least 1 

question incorrectly. 20.8% answered the fourth or fifth question 

correctly, but the other question incorrectly. Again, this could be 

considered a “slip” assuming NCCR is an accurate detection of 

mastery, or might indicate a false positive error in NCCR.  

 

Again, we purposely used problem sets with a mastery threshold 

of five so that the fourth and fifth actions after three consecutive 

correct responses could be analyzed and serve as a measure of 

accuracy of NCCR. Using two questions provides a more robust 

measure of next problem correctness. However, this presents a 

challenge in interpreting the classification of students who 

answered one of the two questions incorrectly. We can conclude 

that for 3-CCR, at least 75% of students are correctly identified as 

mastering this skill, and that this percentage is slightly lower for 

those students who made at least one error prior to answering 

three consecutive questions correctly. This percentage might be 

higher depending on how we interpret the approximately 20% of 

students who made one error after reaching the 3-CCR threshold. 

 

Table 9. For students who answered three consecutive 

questions correctly AFTER at least one error, percentages of 

students with each response combination on the fourth and 

fifth action are presented. 

3 Consecutive with Errors Fourth Question 

 

Fifth Question 

 Incorrect Correct 

Incorrect 4.2% (13) 10.4% (32) 

Correct 10.4% (32) 75.1% (232) 

 

 

KT 
The learned parameters from fitting KT were used to compute the 

probability of the student being in the learned state for each 

student action. We fit a set of parameters for each of the 25 

problem sets ensuring that these parameters are reasonable. In 

looking at only the first string of three consecutive correct 

responses, the KT probability for the third, fourth and fifth action 

were analyzed. To determine how KT as a mastery threshold 

compares to NCCR, the percentage of students who had a KT 

prediction of 95% or higher was calculated. Again, students who 

answered the first three questions correctly were separated from 

those who answered at least one question incorrectly.  

 

For students who answered the first three questions correctly, 

88.9% had at least a 95% probability of being in the known state 

according to KT. This increased to 96.1% after the fourth question 

was answered correctly and to 100% after the fifth question (see 

Table 3).   

 

Table 10. KT prediction for students who answered three 

consecutive questions correctly without an error. 

Number of consecutive 

questions correct 

3 4 5 

Percentage of Students with KT 

prediction at least 95% 

88.9% 98.1% 100% 

 

For students who had at least one incorrect response before 

getting three correct in a row, only 63.2% of students had at least 

a 95% probability of being in the known state according to KT 

(see Table 4). This increased to 89.6% after the fourth question 

and to 96.8% after the fifth.  

 

Table 11. KT prediction for students with three consecutive 

questions correct AFTER at least one error.  

Number of consecutive 

questions correct 

3 4 5 

Percentage of Students with KT 

prediction at least 95% 

63.2% 89.6% 96.8% 

 

This suggests that NCCR, at all thresholds, is more lenient than 

KT, as not all students who met the NCCR threshold met the KT 

threshold. This difference is particularly pronounced for students 

who made at least one error, potentially lending support to the 
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findings in Beck [2] that students who reach three correct in a row 

later in a problem set may not have mastered the skill.  

 

However, it is necessary to determine the accuracy of these KT 

predictions. To understand how we measure accuracy of detecting 

mastery see Table 5. We consider students in the “threshold 

met/correct” cell or “threshold not met/incorrect” cell to be 

accurately identified as mastered. We calculated the percentage of 

students who were labeled mastered, according to reaching the 

threshold, who also answered the next question correctly, and 

those who did not reach the threshold, and answered the next 

question incorrectly. We recognize that students in the “threshold 

met/correct” cell may represent false negatives in that students 

may have had to complete additional questions beyond the 

moment they acquired the knowledge.  

 

Table 5. Defining how NCCR’s accuracy is measured. 

 Mastery Status 

P
er

fo
rm

an
ce

 

 Threshold Met Threshold Not Met 

Correct  Accurate  False Negatives 

Incorrect  False Positives  Accurate 

 

To assess the accuracy of KT, we identified mastery status by 

computing the student’s probability of being in the learned state 

after their third consecutive correct responses. We examined 

student performance on the fourth question based on this mastery 

status. For students who answered three consecutive questions 

correctly, without an error, KT accurately identified mastery 82% 

of the time (see table 6), which is consistent with the performance 

of 3-CCR.  

 

Table 6. Accuracy of KT detecting mastery for students who 

answered three consecutive questions correctly without an 

error. (n=287) 

 Threshold 

Met 

(>95%) 

Threshold Not 

Met (<95%) 

Next Question Correct 80.5% (231) 9.4% (27) 

Next Question Incorrect 8.4% (24) 1.7% (5) 

 

For students who made at least one error before reaching 3 correct 

in a row, accuracy drops to 66% and false negatives increase by 

18% (Table 7). This suggests that while KT is more stringent than 

3-CCR, it is less accurate due to the increase in students who are 

unable to reach the threshold, yet seem to have learned the skill.  

 
Table 7. Accuracy of KT detecting mastery for students who 

answered three consecutive questions AFTER at least one 

error. (n=324) 

 Threshold 

Met 

(>95%) 

Threshold 

Not Met 

<95% 

Next Question Correct 57.7%(187) 27.8%(90) 

Next Question Incorrect 5.9%(19) 8.6%(28) 

 

3.2 Incremental Efficiency Analysis  
This preliminary data suggests that perhaps a higher threshold of 

consecutive correct responses might yield a more accurate 

detection of mastery. However, we must consider the amount of 

time required to reach such a threshold, and the potential 

introduction of false negatives. We used the same data set from 

above, in which students are required to reach 5CCR. As 

mentioned earlier, if a student completed more than one 

assignment, they were used multiple times. The table below 

(Table 8) shows the distribution of the maximum N-CCR 

thresholds reached by 698 students. The number (percent) of 

students who maxed out at each NCCR threshold and the average 

(standard deviation) number of items completed for students at 

that threshold are presented. For example, 542 students reached 

the 5-CCR threshold; 43 students reached 4-CCR (failing to 

answer five consecutive questions correctly); 67 students failed to 

reach more than 2-CCR.  

Table 8: Distribution of students across the maximum N-CCR 

thresholds met and the number (std) of questions completed to reach 

that threshold.  

NCCR 5CCR 4CCR 3CCR <3CCR 

Number (Percent) 

of students 

542 

(77.7%) 

43 

(6.2%) 

46 

(6.6%) 

67 

(9.6%) 

Average number 

(std) of questions 

7.7 

(4.2%) 

13.6 

(9.0%) 

11.3 

(7.0%) 

8.8 

(5.7%) 

 

Generally, students who failed to reach the 5-CCR threshold 

completed more questions. This is potentially an indication of 

wheel spinning [2] and could be used to detect this undesirable 

behavior.  

For the majority, students who finally reached 5CCR, it is 

important to know whether the threshold is so high that we have 

introduced false negatives. In other words, were students forced to 

practice beyond the moment when they learned the skill?  

Using the data generated from the students reaching the 5-CCR 

threshold, we can determine how many additional questions were 

required to reach each incremental threshold, one through five. 

This will provide insight into the tradeoff between potential 

increased mastery detection and time consumption, as measured 

by number of questions completed. Similarly to the analysis 

above, we divided students into two groups: students who 

answered three consecutive questions correctly without an error, 

and students who answered three consecutive questions correctly 

after at least one error. 

Table 9 shows the distribution of students across the number of 

questions necessary to move through each threshold of NCCR. 

For example, after answering three questions correctly without an 

error, 249 students needed one additional question to reach 4-

CCR, however 18 students needed five questions to reach 4-CCR, 

resulting in a response sequence of: 1,1,1,0,1,1,1,1. 

The numbers that are identified in blue represent students, who 

reach the N-CCR threshold, made only one error and then reach 

the N+1-CCR threshold. It is very likely that these students 

slipped at the N+1th problem. For students who need more 

additional items (noted as red), it is very likely that they in fact 
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need the extra practice. Therefore, for students who reach 3-CCR 

without an error, it seems that about 6% students are wasting time 

with a higher threshold, while about only 2% will benefit from the 

additional practice. In the contrast, for students who reach 3-CCR 

after making at least one error, about 3% to 4% of students will 

waste time while 4% will actually benefit from the additional 

practice required by the higher threshold.  

Table 9. Distribution of students across the number of 

questions necessary to move through each threshold of NCCR.  

Number 

(percent) 

of students 

3CRR without an 

error (n = 272) 

3CRR with at 

least one error 

(=270) 

3CRR 4CRR 3CRR 4CRR 

Number of 

additional 

questions 

needed for 

students to 

reach the 

next 

threshold of 

NCCR 

1 249 

(91.5%) 

248 

(91.2%) 

249 

(92.2%) 

253 

(93.7%) 

5 18 

(6.6%) 

\ 10 

(3.7%) 

\ 

6 5 

(1.8%) 

18 

(6.6%) 

 

11 

(4.1%) 

7 

(2.6%) 

>6 6 

(2.2%) 

10 

(3.7%) 

 

This suggests that for students who reach the lower threshold 

without errors, a higher threshold is unnecessary and will waste 

student’s time. However, for students who do not initially reach 

the 3-CCR, a higher threshold is more appropriate to provide 

sufficient practice to in fact learn the skill.  

METHODOLOGY (Study II) 
The results of the initial study suggested that for detecting 

mastery, as defined by next problem correctness, because of KT’s 

more stringent threshold than 3-CCR, it’s accuracy suffers due to 

false negatives. We proposed a second study to examine the 

potential improvement to accuracy higher threshold of NCCR 

might provide. Additionally, other measures of mastery should be 

considered. To determine the efficacy of NCCR with different 

thresholds and KT at detecting mastery, a randomized-controlled 

trial was conducted. A post-test was used to measure next 

problem correctness and a transfer question was included to 

provide an additional measure of mastery.  

Seventy-seven students in a seventh grade math class participated 

in the experiment in ASSISTments as part of their math class. 

Students answered questions from two topics (order of operations 

and ratios), which were counterbalanced for order and NCCR 

threshold (3-CCR and 5-CCR). Students were randomly assigned 

in one of four conditions (see Table 10 for distribution of 

students). 

The randomization into conditions and the percent of students 

who completed the assignment by condition was not even. 

However, if we ignore the order of the topics and collapse 

conditions A with D and B with C, the percent of students by 

NCCR is even. Specifically, the percent of students who 

completed Order of Operations with 3-CCR is 48% and the 

percent of students who completed Ratios with 3-CCR is also 

48%.  Students were given different amounts of time in class to 

work on the assignment. Therefore, only students who had enough 

time to complete both topics were included in the analysis n=37).  

Table 10: Distribution of students among the four conditions.  

Condition Students 

Assigned 

Students 

Completed 

A. Order of Operations 3-CCR  

then Ratios 5-CCR 

18 11 

B. Order of Operations 5-CCR  

then Ratios 3-CCR 

15 8 

C. Ratios 3-CCR  

then Order of Operations 5-CCR 

29 13 

D. Ratios 5-CCR  

then Order of Operations 3-CCR 

15 5 

 

End of problem-correctness feedback and hints upon request were 

available for every question. For each topic, once students met the 

given threshold, they were immediately given a post-test that 

consisted of two morphologically similar questions and one 

transfer question. We recognized that the morphologically similar 

questions were providing additional practice beyond the set 

threshold, therefore the post-test questions were assigned in a 

random order. Additionally, to provide data to compute a partial 

credit score on the post-test, correctness feedback and hints were 

provided.  

To ensure that students would reach both post-tests, the post-test 

was administered following the 14th question, even if the 

threshold was not achieved. This also allows us to detect students 

who were not labeled mastered yet who were successful on the 

post-test and/or transfer question, serving as an indication of false 

negatives.  

RESULTS (Study II) 

NCCR 
An initial analysis of the data revealed that while both topics were 

balanced in terms of overall difficulty, (paired t-test p=0.33), post 

test scores for Ratios (62%) was slightly lower than Order of 

Operations (68%). However, performance on the transfer question 

was significantly lower for Ratios (27%) than Order of Operations 

(70%) (paired t-test p<0.001). Using a partial credit score [11] for 

the post test that accounts for number of hints and attempts used, 

also failed to show any differences in learning (paired t-test 

p=0.33). Order appears to have a slight effect for Order of 

Operations (t-test p=0.02), completing it first lead to slightly 

higher post test scores (m=81%) compared to second (57%). 

However this effect was not found for Ratios (t-test p=0.86).  

We assume that if students complete more problems, due to a 

higher threshold of mastery, they should learn more. To assess if 

students do in fact learn more when completing an assignment 

with a higher threshold of consecutive correct responses, post-test 

scores for 3-CCR were compared to 5-CCR. A paired t-test 

revealed that post-test performance on the topic with 5-CCR 

(66%) was not significantly higher than post-test performance on 

the topic with 3-CCR (63%) despite having answered more 

questions (p=0.890). When completing the topic with a threshold 

of 5, students completed on average 11 questions (sd=3.6) 

whereas the topic with a threshold of 3 resulted in an average of 

seven questions completed (sd=3.5). This suggests that a higher 

threshold of NCCR does not lead to improved learning despite the 

additional practice that it requires. However, it is important to 
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note that not all students reached the set threshold for mastery and 

we capped practice attempts at 14. This means that students in 

both conditions, who did not master the skill, received the same 

amount of practice.  

For 3-CCR, 57% of students were accurately identified as 

mastered or not mastered. However, 43% of students were 

identified mastered, yet failed to answer the transfer question 

correctly (Table 11). This suggests that 3-CCR has a higher rate of 

false positives. Interestingly, 3-CCR was more accurate for the 

topic Order of Operations (88%) than the topic Ratios (33%). 

 

Table 11. Student performance on transfer question based on 

3-CCR threshold. 

Percent(Number) 

of students 

Threshold Met Threshold Not Met 

Transfer Correct 46%(17) 0% 

Transfer 

Incorrect 

43%(16) 11%(4) 

 

For 5-CCR, 73% of students were accurately identified as 

mastered or not mastered (Table 12). Unlike with 3-CCR, this 

accuracy persists across topics, Order of Operations (76%) and 

Ratios (69%). However, 8% of students who were unable to meet 

the threshold were able to answer the transfer item correctly. As 

expected, a higher mastery threshold introduces false negatives, 

which were not present in 3-CCR. Specifically, three students 

were subjected to additional practice that did not appear to be 

necessary. Of the 14 students who did not meet the higher 

threshold of 5-CCR, 13 were able to meet the 3-CCR. Of those 

13, 62% (n=8) failed to answer the transfer question correctly. 

This provides further confirmation that 5-CCR is more accurate at 

detecting mastery, as defined as performance on a transfer 

question, than 3-CCR.  

Table 12. Student performance on transfer question based on 

5-CCR threshold.  

Percent(Number) 

of students 

Threshold Met Threshold Not Met 

Transfer Correct 43%(16) 8%(3) 

Transfer 

Incorrect 

19%(7) 30%(11) 

Unlike in Study I, we did not separate students who met the 

threshold without an error, from those who made at least one 

error. The sample size was too small and more than 85% of 

students in both conditions made at least one error.  

KT 
To fit our model with knowledge tracing, we set the initial guess 

rate as 0.05 to avoid degenerate models. Other parameters were 

set randomly. We fit KT repeatedly eight times for each topic, and 

chose the non-degenerate learned parameters, which best fit the 

data (i.e. with maximum log likelihood). Then we used the chosen 

parameters as initials to fit KT one more time to build the 

prediction models, which were used to predict performance of 

students in the experiment. The learned parameters for Order of 

Operations are: prior=0.862, learn=0.137, forget=0.000, 

guess=0.305, and slip=0.205. The learned parameters for Ratios 

are: prior=0.805, learn 0.144, forget=0.000, guess=0.329, 

slip=0.205. 

The parameters were used to calculate the probability that a 

student was in the learned state after each question. This value 

was used to determine mastery. Students with a probability greater 

than 95% were considered mastered. Results of a paired t-test 

indicate that the average KT probability of learned for Order of 

Operations (m=94%, sd=20) was significantly higher than for 

Ratios (m=90%, sd=23) (p=0.04, effect size 0.19).  

To determine the effect of additional practice on KT predictions, 

the probability the student was in the learned state for the topic 

with an NCCR threshold of 3 was compared to that of the same 

student for the topic with an NCCR threshold of 5. Results 

indicate that the additional practice required by a higher threshold 

does not increase the probability that a student will be in the 

learned state. When the threshold for number of correct responses 

was three, students had an average probability of being the 

learned state of 91.8% (sd-21.9), yet for a threshold of five, the 

average probability was 92.0% (sd-21.5). Similar to the findings 

of NCCR, this suggests that additional practice created by a 

higher mastery threshold of consecutive correct responses does 

not in fact lead to increases in learning.  

To determine the accuracy of KT at detecting mastery, as 

measured by performance on the transfer question, we calculated 

the percent of students who had at least a 95% probability of 

being in the learned state who also answered the transfer question 

correctly and those who were less than 95% who answered the 

question incorrectly. Results indicate that KT accurately detected 

mastery 54% of the time (Table 13). This is comparable to the 

accuracy of three right-in-a-row used by the NCCR method, but 

lower than the accuracy of 5-CCR.  

Table 13. Student performance on the transfer question based 

on KT’s 95% threshold. 

Percent(Number) 

of students* 

Threshold Met Threshold Not Met 

Transfer Correct 42%(31) 7%(5) 

Transfer 

Incorrect 

39%(29) 12%(9) 

*Each student is counted twice for they worked on 2 skills. 

When looking at the topics separately, KT was accurate 64% of 

the time for Order of Operations but only 43% of the time for 

Ratios. KT predications differed slightly when accounting for the 

difference in question completion rates due to the higher NCCR 

threshold used to design the assignment. Specifically, for sections 

that required 3-CCR, KT’s accuracy was 60% and for 5-CCR 

KT’s accuracy was 54%. This suggests that KT is more accurate 

at detecting performance on the next problem than performance 

on a transfer question.  

DISCUSSION 
 

Detecting mastery is essential when personalizing the amount of 

practice a student receives when working in an intelligent tutoring 

system. However, mastery can be measured in different ways, 

which affects the accuracy of the mastery detection method.  

 

When detecting mastery, as measured by next problem 

correctness, it appears that despite its simplicity, 3-CCR is a 

highly effective method for detecting mastery. The incremental 

efficiency analysis revealed that, for students who do eventually 

reach a 5-CCR threshold, 3-CCR is most likely sufficient, as any 

error made beyond that is most likely a slip and over 90% of 

students will go on to answer the next two questions correctly. 
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There is a slight suggestion that for students who do not 

immediately reach the 3-CCR threshold, the additional practice 

required by a higher NCCR threshold might be beneficial. The 

results of the randomized-controlled trial support this finding, as a 

higher threshold did not lead to increased performance on a post-

test. KT’s more stringent threshold reduces its accuracy by 

introducing false negatives, leading to unnecessary additional 

practice for many students.  

 

When detecting mastery, as measured by performance on a 

transfer question, 5-CCR appears to be more accurate than 3-CCR 

or KT. Both struggled to accurately detect mastery for a 

challenging question. Specifically, many students were able to 

reach the threshold, yet were not able to answer the transfer 

question correctly. On-the-other-hand, with 5-CCR, very few 

students who were able to reach the threshold answered the 

transfer question incorrectly. This suggests that for detecting 

robust learning, a higher NCCR threshold is superior. However, 

there were a handful of students who were unable to reach the 

threshold who did answer the transfer question correctly. This 

confirms that with an increased threshold comes an increased 

frequency in false negatives. Yet the frequency of these false 

negatives is lower with 5-CCR than with KT.  

 

As a measure to reduce the amount of unnecessary practice a 

student may receive, we capped the number of questions students 

were given to fourteen. Using this method, a system can 

comfortably use a higher mastery threshold to more accurately 

identify students who have or have not mastered a skill, without 

subjecting students to endless practice. Students who reach this 

cap, prior to mastering the skill, could be given an alternate 

intervention. This strategy could then be used to reduce wheel 

spinning.  

 

This analysis began when the first author, a school teacher using 

ASSISTments, became frustrated with the handful of students 

who were reaching the 3-CCR threshold yet not retaining the skill. 

Upon learning about the more sophisticated KT, it was suggested 

that ITS, like ASSISTments, would be more effective using this 

method to determine mastery.  However, the results do not 

support this. The naive three-correct-in-a-row method for 

detecting mastery, seems to predict next problem correctness well 

and a higher NCCR threshold is superior to KT when predicting 

performance on transfer items.  
 

IMPLICATIONS AND FUTURE 

RESEARCH 
It is necessary to consider the purpose, and therefore importance, 

of mastery detection in an intelligent tutoring system. Many 

systems use mastery to determine the number of questions 

students will complete for that topic. If students will be exposed to 

delayed/spaced practice for that skill, then accuracy of mastery 

detection is less critical because students are guaranteed to have 

additional opportunities to demonstrate mastery. If mastery means 

that students will no longer have exposure to that skill, then 

accurately detecting mastery is essential and worth additional 

student practice to ensure that accuracy.  

 

Results from these studies suggest that if accuracy is important, 

NCCR with a higher threshold, such as five, is preferable. Not 

only does it decrease the likelihood of guessing, it was also shown 

to more accurately predict performance on a transfer question. 

However, both Study I and II suggest that 3-CCR is a reasonable 

method for detecting mastery because higher thresholds did not 

lead to improved learning, as measured by a post-test, nor did it 

differ from KT when predicting performance on a transfer 

question. The results from the incremental efficiency analysis 

justify the exploration of an adaptive NCCR threshold. For 

students who do not make an error, 3-CCR could be used as the 

threshold. As soon as students make an error, a higher threshold, 

such as 5-CCR, could be imposed.  

 

While we were able to manipulate different thresholds of NCCR, 

we were not able to manipulate KT. It would be interesting to 

explore the accuracy of KT when it is used to determine 

assignment completion, instead of being applied to the data later. 

Specifically, does using KT to detect mastery lead to improved 

learning when compared to NCCR? 

 

Finally, we know that 5-CCR leads to increased accuracy in 

predicting retention question performance. This suggests that 5-

CCR leads to more robust learning. This hypothesis should be 

explored further using other measures of robust learning, 

including performance on delayed retention tests [10]. 
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ABSTRACT 

Traditional practices of spacing and expanding retrieval practices 

have typically fixed their spacing intervals to one or few 

predefined schedules [5, 7]. Few have explored the advantages of 

using personalized expanding intervals and scheduling systems to 

adapt to the knowledge levels and learning patterns of individual 

students. In this work, we are concerned with estimating the 

effects of personalized expanding intervals on improving 

students’ long-term mastery level of skills. We developed a 

Personalized Adaptive Scheduling System (PASS) in 

ASSISTments’ retention and relearning workflow. After 

implementing the PASS, we conducted a study to investigate the 

impact of personalized scheduling on long-term retention by 

comparing results from 97 classes in the summer of 2013 and 

2014. We observed that students in PASS outperformed students 

in traditional scheduling systems on long-term retention 

performance (p = 0.0002), and that in particular, students with 

medium level of knowledge demonstrated reliable improvement 

(p = 0.0209) with an effect size of 0.27. In addition, the data we 

gathered from this study also helped to expose a few issues we 

have with the new system. These results suggest personalized 

knowledge retrieval schedules are more effective than fixed 

schedules and we should continue our future work on examining 

approaches to optimize PASS.   

Categories and Subject Descriptors 

H.4 Information Systems Applications; K.3.1 Computer Uses in 

Education; J.4 Social and Behavioral Sciences 

General Terms 

Algorithms, Measurement, Performance, Design, Theory. 

Keywords 

Knowledge retention, retrieval practice, spacing effect, intelligent 

tutoring system, personalization 

INTRODUCTION 

Automatic Reassessment and Relearning 

System 
Based on a robust memory phenomenon known as the spacing 

effect [4], expanding retrieval practice is often regarded as a 

superior technique for promoting long-term retention relative to 

equally spaced retrieval practice [3, 8]. Expanding retrieval 

practice works by, after the student learns a skill, having the 

student perform the skill at gradually increasing spacing intervals 

between successful retrieval attempts. Research has shown that 

spacing practice has a cumulative effect so that each time an item 

is practiced it receives an increment of strength [10]. This effect is 

specifically crucial to subjects such as mathematics: we are more 

concerned with students’ capability to recall the knowledge that 

they acquired over a long period of time. What is more, the ability 

to retain a skill long-term is one of the three indicators of robust 

learning [2]. 

 

Figure 12. The enhanced ITS mastery learning cycle 

Inspired by the importance of long-term retention and the design 

of the enhanced ITS mastery cycle in Figure 12 proposed by 

Wang and Beck [11], we developed and deployed a system called 

the Automatic Reassessment and Relearning System (ARRS) [13] 

to make decisions about when to review skills that students have 

mastered in ASSISTments, a non-profit, web-based tutoring 

system. ARRS is an implementation of expanding retrieval in the 

ITS environment. Unlike most ITS systems in which the tutoring 

stops if the student masters a given skill, ARRS assumes that if a 

student masters a skill with three correct responses in a row, such 

mastery is not necessarily an indication of long-term retention. 

Therefore, ARRS will present the student with retention tests on 

the same skill at expanding intervals spread across a schedule of 

at least 3 months. The default setting of the ARRS scheduling 

system uses a spacing interval of 7-14-28-56, and this indicates 

that each skill requires 4 level tests: the first level of retention 

tests takes place 7 days after the initial mastery; the second level 
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of retention tests 14 days after successfully passing the first 

retention test, and so on. If a student answers incorrectly in one of 

these retention tests, ASSISTments will give him an opportunity 

to relearn this skill before redoing the same level of test. 

Table 12. Retention performance by mastery speed and 

retention interval from pilot study 

Retention 

test delay 

# tests % correctness 

Mastery speed 3 – 4 

1 day 1186 84.4% 

4 days 1169 82.2% 

7 days 1171 81.7% 

14 days 1233 81.2% 

Mastery speed 5 – 7 

1 day 467 77.9% 

4 days 432 76.2% 

7 days 362 77.1% 

14 days 420 73.1% 

Mastery speed > 7 

1 day 280 67.5% 

4 days 320 62.8% 

7 days 267 59.6% 

14 days 243 54.8% 

 

In our previous studies [13, 14] of modeling student retention 

performance, we found that the number of problems required 

achieving mastery, which we referred to as the mastery speed, is 

an extremely important feature for predicting students’ retention 

performance. We observed that, in general, the slower the mastery 

speed, the lower the probability that the student can answer the 

problems in the retention test correctly. Students who mastered a 

skill in 3 or 4 problems had approximately an 82% chance of 

responding correctly on the first retention test, while students who 

took over 7 attempts to master a skill only had a 62% chance [13]. 

Based on these results, we conclude that students with different 

mastery speeds have different retention patterns, so we began 

searching for the optimal retrieval schedules for different levels of 

student knowledge.  

In order to find the optimal retention schedule for students and the 

best way to boost their performance in long-term mathematics 

learning, we conducted a pilot study by setting up four different 

interval schedules (1 day, 4 days, 7 days, and 14 days) and 

examined the impact on retention performance by comparing 

results across different groups of students. The results are shown 

in Table 12 and [12]. We saw a consistent decrease in retention 

performance with the longer retention intervals across in all 

students, no matter if they fell into the high mastery level, 

medium mastery level or low mastery level category. The results 

from Table 1 also demonstrated a main effect of mastery speed on 

retention performance: students with slower mastery speed had 

lower performance than students with a faster mastery speed; this 

statement is true even when we compared a 1-day performance of 

students with a mastery speed of over 7 (67.5% correct) speed 

versus a 14-day performance of students with a mastery speed of 

3 or 4 (81.2% correct). A sizeable and interesting effect is that 

students with slower mastery speeds had bigger decreases in 

retention performance as retention intervals lengthened. For 

example, a high mastery level student had a decrease of 3.2% 

between 1 day tests and 14 days tests but the retention 

performance of low mastery level students dropped 12.7%. These 

results suggest retention intervals probably should vary, rather 

than be fixed, based on the student’s knowledge of the skill. 

Personalized Adaptive Scheduling System 
Although ARRS helps students review knowledge after a time 

period, it neither knows a student’s knowledge level, nor does it 

have the mechanism to change the retention schedule based on a 

particular student’s performance. Here we formed a hypothesis 

that we can improve students’ long-term retention levels by 

adaptively assigning students with gradually expanding and 

spacing intervals over time and we proposed to design and 

develop such a system, called Personalized Adaptive Scheduling 

System (PASS), as shown in Figure 13. PASS enables ARRS to 

schedule retention tests for students based on their knowledge 

levels. In the spring of 2014, we enhanced the traditional ARRS 

with the PASS and deployed it in ASSISTments. 

 

Figure 13. Design of Personalized Adaptive Scheduling System 

(PASS) 

The current workflow of PASS aims to improve students’ long-

term retention performance by setting up personalized retention 

test schedules based on their knowledge levels. Here we rely on 

the mastery speed of a skill as an estimate of the student’s 

knowledge and, consequently, predictor of retention performance. 

We retained the ARRS design of 4 expanding intervals of 

retention tests for each skill; however, PASS alters how the first 

interval behaves.  When a student finishes initially learning a skill, 

we use his mastery speed to decide when to assign his first level 1 

retention test. The mapping between mastery speed and retention 

delay intervals of the level 1 test is shown in Table 13. When a 

student passes the first test, PASS will schedule another test with 

a 1-day longer delay.  Once the student passes the 7-day test, he is 

promoted to level 2 with a delay of 14 days.  From that point on 

the intervals are the same as in the ARRS system.  Note that 

mastery speed can be extracted from both students’ initial learning 

and relearning processes. Therefore, when a student fails a 

retention test, a relearning assignment will be assigned to the 

student immediately.  How quickly the student relearns this 

assignment will be used to set the interval for his next test.  The 

mechanism of level 2 to level 4 tests is simpler. When a student 
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fails a retention test, the retention delay will be reduced to the 

previous level (e.g., from 56 days to 28 days).  It will be increased 

to the next level if the student passes the delayed retention test. 

Table 13. Mapping between mastery speed and level 1 

retention delays  

Mastery Speed Retention Delay 

3 7 

4 6 

5 5 

6 4 

7 3 

> 7 1 

 

Here is an example of a student working with PASS in 

ASSISTments. Let’s assume he needed 4 attempts to achieve 

three correct responses in a row in an initial learning assignment, 

so his mastery speed on this skill was 4. PASS then scheduled the 

first level 1 retention test for him to complete 6 days after the 

initial mastery. 6 days later, the student passed the retention test 

and PASS scheduled a 7-day retention test. Then a week later, the 

student passed the 7-day retention test and moved to the level 2 

retention tests.  

A STUDY ON IMPACT OF 

PERSONALIZED EXPANDING 

RETENTION INTERVALS  
After the deployment of PASS in ASSISTments, several key 

issues were revealed that needed to be explored in order to realize 

the potential benefits of personalized expanding retention 

intervals and scheduling for students. We first conducted a study 

in ASSISTments to compare the new PASS with the traditional 

ARRS without PASS. In addition, this study explored the 

influence of personalized scheduling on students’ long-term 

performance, student learning patterns and how they interact with 

the ASSISTments.  

There were several objectives for this study. A central goal was to 

investigate potential long-term retention performance 

improvement to the benefit of personalized spacing schedules. We 

enabled PASS for all classes that were using ARRS on May 15, 

2014; we expected students in these classes might be assigned 

homework during the next few months and thereby become the 

participants in the study. We ended this study on September 1, 

2014 and found that 2,052 students from 40 classes were using 

PASS in the summer of 2014. Teachers of these classes assigned 

93 different homework assignments to their students. Since 

traditional ARRS had been deployed in ASSISTments for over 

two years and a lot of data have been accumulated in the system, 

we extracted previous summer’s ARRS-enabled classes that used 

the same assignments as the historical control group. 2,541 

students from 57 classes in the summer of 2013 were qualified to 

act as historical control group. 

During these two summer periods, students consistently received 

mathematics problem sets as homework assignments from their 

teachers. Once they answered three consecutive questions 

correctly in a problem set, students in the PASS condition would 

be given retention tests based on their mastery speed. If a student 

answered a retention test correctly, he was then given another 

retention test with a longer delay until he passed the level 1 test 

with a 7-day delay. On the other hand, students in traditional 

ARRS condition got 7-day delay retention tests after the mastery 

and went on with the 14-day tests if they answered the 7-day tests 

correctly. In this study, we defined how students performed on the 

14-day retention tests (14 days after passing the level 1 test and at 

least 21 days after the initial mastery learning) as the outcome 

long-term retention tests. It is important to note that students 

usually receive several homework assignments and they may 

perform differently in these assignments, which means a student 

would have multiple tests that should be accounted for in the 

long-term performance. However, it is also possible that students 

do not complete assignments. Specifically, if a student has not 

finished the outcome retention test of a homework assignment by 

the end of this study, we cannot take this record into account.  

RESULTS AND ANALYSIS 
Retention test completion rate was calculated based on the 

number of homework assignments that had outcome tests 

answered divided by the total number of homework assignments. 

Days spent is the time interval between the start time of level 1 

retention tests and the start time of outcome tests in days. Test 

count accounts for how many level 1 retention tests a student has 

to answer before this student can proceed to outcome tests. 

Students’ long-term performance was calculated as the ratio of 

number of questions answered correctly in outcome tests to 

number of all questions answered in outcome tests. 

Retention Test Completion Rate, Day Spent 

and Test Count 
At the end of this study, the first result we noticed was that a lot of 

homework assignments in both groups did not have the records 

for associated outcome tests.  In other words, a lot of students did 

not reach the 14-day retention tests. In the traditional ARRS 

condition, a total of 8404 homework assignments had been 

assigned to students but only 1,558 (18.5%) of these assignments 

had 14-days retention tests answered. When looking at the PASS 

condition, the retention test completion rate was even lower, only 

1,029 (13.6%) of total 7,589 homework assignments had outcome 

tests answered.  In one sense these low completion rates could 

result from the fact these homework and retention tests were 

assigned to students during the summer vacation so that perhaps 

many students did not treat these assignments seriously.  The data 

also indicated the difference in the completion rates of the two 

conditions were statistically significant (p < 0.0001). We 

hypothesized that this was due to the fact that students in the 

PASS condition took more tests in order to pass the 7-day delay 

tests. Remember, some medium- and low-knowledge students had 

to pass a number of shorter-delay tests to even reach the 7-day and 

then 14-day retention tests. To address this hypothesis, we 

investigated how many days were needed to reach the 14-day test 

from the beginning of level 1 retention tests. The data was 

grouped by the three identified mastery speed bins to represent 

high-, medium- and low-knowledge students on their homework 

assignments 

Table 14. Average day spent of each knowledge level by 

conditions 

Initial mastery 

performance   

ARRS PASS p-value 

Mastery Speed 16.80 18.96 0.0002 
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3 - 4 

Mastery Speed 

5 - 7 

17.67 33.24 0.0001 

Mastery Speed 

> 7 

17.34 32.33 0.0001 

 

Table 14 describes the differences in average days spent between 

ARRS and PASS conditions. The minimum possible delay is 14 

days, achievable for ARRS students who answer the 7-day test 

correctly, and then take their ARRS test when it is immediately 

available.  Students who failed the first ARRS test would have to 

take one or more additional 7-day tests until they responded 

correctly and could be promoted to the 14-day test.  For the PASS 

condition, 14 days is a lower bound only for those students with 

an initial mastery speed of 3, as slower mastery speeds would 

require multiple first-level tests before being promoted to the 14-

day interval.  As expected, students in the PASS condition spent 

more time in the practices of level 1 retention tests; especially for 

medium- and low-knowledge students who spent nearly two more 

weeks in the process of passing the 7-day delay tests relative to 

ARRS students. Table 15 demonstrates that students in the PASS 

condition had more tests to answer by showing the average test 

count of the two conditions therefore it took them more days to 

reach 14-day tests. 

Table 15. Average test count of each knowledge level by 

conditions 

Initial mastery 

performance   

ARRS PASS p-value 

Mastery Speed 

3 - 4 

1.34 1.21 0.0003 

Mastery Speed 

5 - 7 

1.44 3.25 0.0001 

Mastery Speed 

> 7 

1.59 3.69 0.0001 

 

Long-Term Retention Performance 
After it was observed that PASS made students take more practice 

in the retention tests, we became more curious about the impact of 

PASS on long-term retention performance. It is important to 

emphasize that students were balanced with respect to proficiency 

in the ARRS and PASS conditions given their close homework 

performance level: 71.0% correct versus 71.2%. An initial 

analysis on long-term retention performance across all students 

showed the PASS condition (83.4%) outperformed the ARRS 

condition (77.2%) with a reliable but small improvement (p = 

0.0002, effect size = 0.15). When considering the performance 

changes in different knowledge level of students, we again 

grouped the data by three identified mastery speed bins; then we 

examined students’ long-term retention performance with p-

values and effect sizes. 

Table 16. Long-term (14-day) retention performance 

comparison and sample size (in parenthesis) 

Initial 

mastery 

performance   

ARRS PASS p-value Effect 

size 

Mastery 

Speed 3 – 4 

81.79% 

(978) 

83.91% 

(889) 

0.2266 0.06 

Mastery 

Speed 5 – 7 

73.08% 

(327) 

84.53% 

(97) 

0.0209 0.27 

Mastery 

Speed > 7 

64.82% 

(253) 

70.59% 

(51) 

0.4301 0.12 

 

The comparison of long-term retention performance shows that all 

three groups of students in the PASS condition outperformed 

those in the ARRS condition, although the improvements were not 

all statistically significant; only students with medium-knowledge 

on skills performed reliably better with an effect size of 0.27. For 

students with high knowledge on skills, the benefit of using PASS 

was limited; this suggests that solely relying on 7-day delay tests 

is sufficient for this population. A previous study [12] also 

suggested that high-knowledge students have high resistance 

against forgetting.  On the other hand, providing low-knowledge 

students with more spaced retention tests and relearning 

assignments did not stop the decay of retention even after these 

students had approximately 3 additional relearning assignments 

on the same skill, and we only noticed a small effect size (0.12) 

improvement on the retention performance. Because PASS 

employs a higher stand of mastery and retention, thus few low-

knowledge students reached outcome tests; we in fact noticed that 

only 51 tests had been completed, so this also prevented us from 

achieving a higher effect size in PASS condition. Another notable 

result was when we compared Table 16 vertically: we could see 

that PASS helped to close the performance gap between different 

groups of students. In fact, in the PASS condition, the long-term 

performance of medium-knowledge students even outperformed 

the high-knowledge students. Of course, the small sample size 

tells us we need more studies to validate this result. 

CONTRIBUTIONS, FUTURE WORK AND 

CONCLUSIONS 
The paper makes three contributions. First, the work behind this 

paper designed and deployed a personalized expanding interval 

scheduling system that utilizes spacing effect in the field. Through 

the participation of thousands of students, we carried out a study 

to test the idea of assigning students with different delays of 

retention tests to help them better retain skills. As the first study 

on this system, the paper explores the path of improving ITS to 

help students achieve robust learning via personalized expanding 

retrieval practices. The second contribution of this paper is a 

validation of the hypothesis that students’ long-term performance 

can be improved by giving them tests that are well spaced out and 

scheduled appropriately, before gradually expanding the spacing 

between these tests. Most importantly, this study demonstrates the 

importance of individualization in scheduling retention tests, as it 

shows that students with medium knowledge can match up their 

long-term performance with high-knowledge students by using 

PASS. The third contribution of this paper is the confirmation of 

concept of finding the optimal retention interval by using mastery 

speed as a measurement of students’ knowledge level. By using 

mastery speed to group students, we can distinguish different 

learning and retention patterns among students with different 

knowledge levels. In the process of work, we have noticed that 

there has been other work on retention, such as the personalized 

spaced review system [6]; however, this work focuses on fact 
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retrieval and is able to make far stronger assumptions of when 

students are exposed to content.  Our work examines a procedural 

skill, in a classroom context where we cannot be sure what 

material teachers cover in class and we are not aware of all 

homework assignments, thus we cannot be sure when students last 

saw a skill. 

This PASS and its implementation in ASSISTments have been 

introduced to the field for just a few months, so we are still at the 

initial phase of study. Our goal is to find the optimal spacing 

schedules for students and the best way to boost their performance 

in long-term mathematics learning. There are many further 

problems that we are interested in: What should we do to help 

low-knowledge students, considering the improvement we saw in 

the study was so small, particularly given the increased amount of 

practice they received? From the data we collected, it was obvious 

that there were some areas that required improvement. For 

example, we simulated a scenario to improve the retention 

performance of low-knowledge students to match up to the 

performance level of high-knowledge students (83.91%) and also 

improve completion rates to the level of ARRS condition so we 

could collect 228 data points. Given these optimistic assumptions, 

there intervention would have an effect size of 0.45. Thus, in this 

scenario, achieving a medium effect size (0.5) is not feasible.  

What is the fundamental cause of mistakes? Lack of effort or 

interest on the student’s part, or a genuine lack of knowledge [1]? 

How can we increase the completion rate? Most importantly, how 

can we solve the optimization problem to balance time cost and 

performance improvement [9]? Is there a better way than just 

assigning high-frequency retention tests to students? 

This paper presents the initial study of using the personalized 

adaptive scheduling system to explore a solution to the optimal 

spacing schedule problem. With the experiment data we collected, 

we are excited to see that the PASS can help to improve long-term 

retention performance across all three groups of students and 

become the backbone of future development for promoting 

student robust learning.   
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ABSTRACT 

Researchers invested in K-12 education struggle not just to 

enhance pedagogy, curriculum, and student engagement, but also 

to harness the power of technology in ways that will optimize 

learning. Online learning platforms offer a powerful environment 

for educational research at scale. The present work details the 

creation of an automated system designed to provide researchers 

with insights regarding data logged from randomized controlled 

experiments conducted within the ASSISTments TestBed. The 

Assessment of Learning Infrastructure (ALI) builds upon existing 

technologies to foster a symbiotic relationship beneficial to 

students, researchers, the platform and its content, and the 

learning analytics community. ALI is a sophisticated automated 

reporting system that provides an overview of sample 

distributions and basic analyses for researchers to consider when 

assessing their data. ALI’s benefits can also be felt at scale 

through analyses that crosscut multiple studies to drive iterative 

platform improvements while promoting personalized learning. 

Categories and Subject Descriptors 

K: Applications to Education. K.3: Computers and Education.  

I.2.2: Automatic Programming. G.3: Probability and Statistics. 

General Terms 

Measurement, Documentation, Experimentation, Standardization. 

Keywords 

Assessment of Learning Infrastructure, Automated Analysis, 

Randomized Controlled Experiments at Scale, The ASSISTments 

TestBed, Universal Data Reporting, Tools for Learning Analytics. 

INTRODUCTION 
An immense community of researchers, educators, and 

administrators seeks to enhance the effectiveness of educational 

practices. Those invested in K-12 education struggle not just to 

enhance pedagogy, curriculum, and student engagement, but also 

to harness the power of technology in ways that will optimize 

learning. Researchers often fall back on observational studies or 

turn to data mining large longitudinal datasets due to the 

difficulties inherent to conducting student-level randomized 

controlled experiments (RCEs) in authentic learning 

environments. Software for sharing educational data has driven 

tremendous progress in educational research and best practices. 

For instance, the Pittsburgh Science of Learning Center’s 

DataShop [8], funded by the National Science Foundation, 

provides an extensive database of educational datasets for post 

hoc data mining and analysis. However, the pace and power of 

educational research would increase drastically if researchers had 

easier access to environments in which they could design, 

implement, and analyze hypothesis driven experiments. The RCE 

remains the “gold standard” in determining causal relationships 

and was referred to when the U.S. Department of Education 

advocated for K-12 schools to apply basic findings from cognitive 

science to improve educational practices [16]. Without the 

assistance of scalable technologies, it has been difficult for 

researchers to answer the call to conduct RCEs within authentic 

academic settings [6] due to the high cost of establishing and 

maintaining sample populations, the complications inherent to 

randomization at the teacher-level (i.e., vast samples are required), 

and the often invasive curriculum restrictions necessary to 

establish sound controls.   

When designed with flexibility and collaboration in mind, online 

learning platforms offer a unique and scalable approach to 

educational research and data analysis. Users of online learning 

platforms (i.e., students and teachers) create hundreds of 

thousands of data points each day, with databases of rich learner 

information growing exponentially as platforms gain popularity 

and validity as powerful learning aids. Beyond achievement 

measures, these systems provide opportunities to collect 

information including (but not limited to) behavior and affect [2, 

17], learning interventions within content or feedback [14, 15], 

and interactions between skill domains that help guide curriculum 

development [1]. Through flexibility in content design, 

manipulation, and delivery, researchers are able to tap into the 

elements that drive effective learning within authentic K-12 

classroom environments. When content can be manipulated to 

include parallel assignments, fashioned as conditions within 

RCEs, researchers are able to determine best practices and work 

toward personalized learning. Further, designing these 

environments with the open, collaborative, and perhaps even 

competitive design of RCEs in mind can strengthen internal 

validity and promote open source data reporting for review and 

replication of findings upon publication [11]. By allowing data 

scientists, educational researchers, and K-12 educators to work 

collaboratively within online learning platforms, all are 

empowered to dynamically evaluate and improve the 
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effectiveness of the platform and its content while fostering 

growth in learner analytics. 

2.1 Research in the ASSISTments TestBed 
ASSISTments is a unique online learning platform that was 

designed with educational research as one of its primary goals [5]. 

The platform is used for both classwork and homework by over 

50,000 users around the world, and provides students with 

immediate feedback and rich tutorial strategies and teachers with 

powerful assessment through a variety of reports that pinpoint 

where students are struggling and empower data driven teaching 

[5]. Recent funding from the NSF has allowed ASSISTments to 

promote educational research at scale through the development of 

the ASSISTments TestBed (www.ASSISTmentsTestBed.org). 

External researchers can use the TestBed to embed studies within 

ASSISTments content and non-invasively tap into our user 

population at virtually no cost and in a fraction of the time 

previously required to run experiments within K-12 environments.  

The process of conducting an RCE within the TestBed typically 

involves researchers modifying preexisting certified content to 

include treatment interventions and student-level random 

assignment. The latter feature makes the TestBed a unique and 

robust tool for conducting research; rather than delivering the 

same treatment condition to all students within a particular class, 

students in the same class will be randomly assigned to different 

conditions while participating in the same assignment (i.e., 

content, feedback, or delivery may vary from student to student). 

The library of certified ASSISTments content consists primarily 

of middle and high school mathematics skills, with content 

organized and tagged by Common Core State Standard [10]. 

However, this library has grown to include content in physics, 

chemistry, and electronics, and researchers are able to develop 

their own content for experimentation in other domains.  

Figure 1 depicts a simple study design implemented within the 

ASSISTments TestBed.  Inclusion of a student in this type of 

study is dependent on her ability to access video content (note that 

many schools block video servers like YouTube). When the 

student begins her assignment, she must first pass a “Video 

Check,” or a standard problem that serves as password protection 

to study participation.  If the  student can  access video,  she enters 
 

 

Figure 1. A simple research design that can be built using the 

ASSISTments TestBed to compare learning interventions. 

the ‘password’ provided in the short clip as her answer, and her 

correct response serves as the “Then” in an “If-Then” routing 

structure. If the student enters anything other than the password as 

a response, she is provided a default assignment without video 

content and is not considered a study participant. While this 

process attempts to control for technical issues, it does not 

demand the fidelity of study participants (i.e., we cannot currently 

track viewing statistics for embedded videos). Upon being routed 

into the study depicted in Figure 1, students are randomly 

assigned into one of two conditions using a “Choose Condition” 

routing structure. Note that although two conditions are presented 

here for simplicity, the system is able to compare any number of 

conditions. The platforms approach to random assignment will be 

discussed further in Section 3.1.2. 

In the present example, there are three possible paths that a 

student may follow as she progresses through her assignment (the 

specific trace of these paths will become important in the 

automated reporting and analysis of student performance 

presented in Section 3). For each student, regardless of path, 

ASSISTments logs substantial data detailing performance as the 

student progresses through the assignment. This data includes 

binary measures of problem accuracy (i.e., a correct or incorrect 

first response), the students first action (i.e., an attempt vs. 

requesting tutoring), the number of attempts per problem, the 

number of feedback interactions per problem (i.e., hints requested 

or scaffolds seen), whether or not the student saw the bottom out 

hint (i.e., the correct answer, provided to keep the student from 

getting stuck within the assignment), and start and end times for 

each problem. For researchers with a fine-toothed comb, 

ASSISTments can also provide logged information at the action 

level, detailing each step taken within a problem. ASSISTments is 

also able to track user information that is ultimately helpful to 

researchers, including data on the students performance in the 

system prior to their inclusion in a study, student characteristics 

(i.e., gender, age), and additional variables at the class and school 

levels. Through use of the TestBed, this information is 

consolidated, anonymized, and provided to researchers through 

unified reports (depicted in Section 3.1.1) to enhance the ease 

with which RCEs are conducted at scale.    

2.2 Utility of Automated Data-Preprocessing 
With students accessing experiments naturally in authentic 

learning environments, sample populations increase as a function 

of time. For instance, within three months of deploying a study 

within ASSISTments, a researcher may accrue 740 participants. 

This process does not require direct interaction between 

researcher and teachers, although some researchers choose to 

work directly with local classrooms to establish stronger controls. 

As external researchers are unfamiliar with the ASSISTments 

database and the inner workings of the platform, universal data 

reporting and preprocessing techniques were designed to ease the 

hurdle of interpreting system output. Without preprocessing, a 

researcher analyzing data from the study depicted in Figure 1 

would need to use raw data to decipher whether students should 

be included in analyses, what condition each student experienced, 

details pertaining to each students experience within that 

condition (i.e., how many problems were completed, their content, 

and all associated performance data), and how each student 

performed at posttest. While such rich information is helpful in 

analyzing a study, providing researchers with a surplus of data 

necessitates larger and more complex datasets that must still meet 

ease of use requirements. Although different researchers focus on 

different information (as it applies to their particular hypotheses), 
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an infrastructure for data preprocessing, restructuring, and 

reporting was necessary to bring ASSISTments to the next level 

as a shared scientific instrument for educational research. 

In the following sections we discuss the creation of an automated 

reporting and analysis system built to provide researchers with 

data logged from RCEs conducted within the ASSISTments 

TestBed. The Assessment of Learning Infrastructure (ALI) builds 

upon existing technology to foster a symbiotic relationship 

beneficial to students, researchers, the platform and its content, 

and the science of learning. Evolving from a universal data 

logging and retrieval tool, ALI is quickly becoming a 

sophisticated system for automated analysis, offering researchers 

an overview of their sample population and conducting a selection 

of analyses for consideration when assessing data. The benefits of 

ALI can also be felt at scale, with analyses spanning content to 

drive platform improvements with the long-term goal of 

personalizing learning. 

ALI IN THEORY 
The Assessment of Learning Infrastructure is an automated 

research assistant that, while not meant to replace the researcher, 

is meant to lighten the load of working with large data files output 

from RCEs conducted within the ASSISTments TestBed. ALI 

alerts the researcher to new data, presents that data in a 

meaningful way, tentatively examines effects observed between 

conditions, and flags potential threats to validity. On a weekly 

basis, as well as on demand, ALI consults all logged information 

pertaining to a study and conducts preliminary analyses on student 

participation and performance (described further in Section 3). 

The potential benefits of automated reporting and analysis are 

broad; in the next four sections we briefly discuss how ALI’s 

success will affect ASSISTments and its users, researchers and the 

Testbed, and the greater learning analytics community. 

2.3 Benefits to ASSISTments Users 
ALI’s work at scale will help to guide the development of 

stronger learning interventions and, eventually, drive personalized 

learning within ASSISTments. Research conducted within the 

TestBed is unique in that while researchers are able to alter 

content and deliver versatile interventions as previously 

exemplified in Figure 1, such manipulations are not invasive. 

Study participation and student performance within an assignment 

is passively logged. A student may notice that some of her 

assignments include video feedback or have extra survey 

questions while others do not, but she is not informed that she is 

participating in an RCE. A primary goal driving the TestBed’s 

ability to implement RCEs within ASSISTments is the provision 

of normal instructional practice and interventions that do not 

compromise learning.  

ALI is also beneficial to teachers, as the infrastructure is able to 

separate rich study information from daily assessment data. 

Teachers are responsible for assigning content within 

ASSISTments to their students. Although it seems as though 

research designs created in the TestBed would complicate daily 

assessment, class and student reports have been designed such that 

teachers are provided pertinent information in a clean and concise 

manner. This low profile approach to conducting research 

maintains a highly participatory subject pool. Teachers wishing to 

conduct action research within their classes may do so by working 

with the TestBed as well, although most prefer to use day-to-day 

reports to guide their teaching practices rather than large 

automated data files. 

2.4 Benefits to the Researcher 
For those conducting RCEs within the ASSISTments TestBed, 

ALI plays the role of research assistant. The infrastructure 

intelligently communicates with researchers when new data is 

available for analysis and provides an overview of the sample 

distribution across conditions to signify the power of current 

analyses. Although researchers will undoubtedly run their own in 

depth analyses, standard high-level analyses can be automated to 

save time and reduce monotony. For example, ALI’s ability to 

trace a student’s path through an assignment allows the 

infrastructure to infer what condition the student experienced. 

This allows ALI to test for differential attrition rates across 

conditions and notify the researcher of apparent selection biases.  

This simple analysis can serve as a beneficial warning against 

analyzing posttest results due to potential threats to internal 

validity. Combined with the data preprocessing and sophisticated 

reporting that ALI’s analytics are built upon, these notifications 

are often enough to save researchers from hours of wasted labor.  

2.5 Benefits to the Platform 
When considered at scale, ALI’s capabilities for data reporting 

and analysis contribute to the enhancement of the ASSISTments 

platform by supporting practical improvements to content and 

feedback without interrupting student learning. As researchers 

collaborate and compete to design interventions within the 

ASSISTments TestBed, it will grow increasingly possible to 

evaluate interventions at scale, both across skills and 

longitudinally within students. Ideally, the best version of content 

and delivery observed (to date) for a particular skill would be 

delivered to students as the control condition in new RCEs. 

Through this approach, each study offers the potential for iterative 

improvement as experiments are launched and re-launched, 

capturing key features of design-based educational research 

methodology [3]. Such improvements additionally benefit users 

through the predicted outcome of enhanced learning gains and 

researchers through the rapid succession and enhanced validity of 

positive findings.  

ALI’s ability to analyze at scale will also help the ASSISTments 

team to quickly isolate and remove ineffective interventions. It is 

our goal that in the near future, ALI will conduct robust analyses 

across multiple studies while considering student, class, and 

school level characteristics. Roughly speaking, ALI will allow 

ASSISTments to personalize learning by better understanding 

why certain educational practices and interventions work for 

certain students but not for others.  

Benefits for Learning Analytics 
How can ALI and the promotion of infrastructures like ALI within 

other learning platforms benefit the learning analytics 

community? At its very core, ALI answers the general call of 

learning analytics, in that the infrastructure “emphasizes 

measurement and data collection as activities that institutions need 

to undertake and understand, and focuses on the analysis and 

reporting of the data” [20]. A strong focus on providing universal 

measures of learning garnered from authentic learning 

environments will strengthen the validity of findings from a broad 

range of interventions that seek to isolate best practices in 

education. 

Further, much attention in the broader scientific and psychological 

research communities has recently befallen the general inability to 

replicate research findings [7, 11]. The same is likely true for 

educational research, with little emphasis placed on data 

accountability. Perhaps the best outlet for promoting open data, 
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the Pittsburgh Science of Learning Center’s Data Shop [8] takes a 

number of steps in the right direction with regard to shared 

datasets that promote open, replicable, and sound science. ALI 

builds upon the PSLC’s model of open data reporting by 

establishing stable, timestamped links to every data analysis 

report ever provided to a researcher throughout the duration of 

their work within ASSISTments. Researchers are asked to cite the 

report from which they draw data for final analyses and 

publication (explained further in Section 3.1.5).  References to 

these reports will also drastically increase the availability of 

preprocessed and anonymized educational datasets for researchers 

wishing to mine big data without designing specific interventions. 

In some ways, ALI is also an extension of industry track research 

focused on learning analytics; companies like Google and 

Microsoft increasingly implement large-scale experimentation in 

online learning environments to consider reporting metrics and 

analytic methods that meet practical goals rooted in scientifically 

sound evidence [9]. If infrastructures like ALI were incorporated 

into other learning platforms, similar large-scale experimentation 

could easily be promoted for its importance to learning analytics. 

ALI IN PRACTICE 
The Assessment of Learning Infrastructure has grown 

considerably over the past year. ALI began as a robust SQL query 

to the ASSISTments database to retrieve unified information 

across multiple studies and to present it to researchers in a single 

format. Ease of use requirements, communication considerations, 

and feedback from external researchers has helped ALI to grow 

beyond data preprocessing and reporting into a tool for learning 

analytics at scale. The following sections discuss how ALI has 

evolved and provides examples of the infrastructure’s current 

capabilities in reporting, analyzing, and communicating data from 

RCEs conducted within the ASSISTments TestBed.  

ALI’s Current Capabilities 

Data Reporting at Scale 
When a researcher submits a study to the ASSISTments TestBed, 

details about the study and the researcher’s contact information 

are entered into ALI’s study repository. Although researchers can 

request immediate data analysis reports on demand, ALI defaults 

to a weekly inspection of each study in the database and makes a 

decision regarding whether or not to process a data analysis report 

for the researcher. This decision is based on measured increases in 

sample size. Due to common curricula structures, certain skills are 

only used at specific times of year and thus, an assignment with 

an embedded study may be highly popular during the Fall term 

but not the Spring term. When ALI inspects the study’s logged 

data, at least three new participants since the last ALI 

communication are required to trigger a new data report. 

As teachers using ASSISTments are able to make copies of 

assignments and alter their content, ALI is also able to detect 

when teachers have assigned a copy of a study. ALI is 

sophisticated enough to recognize when a copy is identical to the 

original study and include data associated with the copy in each 

report. If a copy of the study has been altered (i.e., problems were 

removed or sections were changed), ALI does not report data 

associated with the copy. This ensures that researchers receive all 

data associated with their experiment without corrupt data.    

Once ALI has determined that new data is available, several 

robust SQL queries are run on the ASSISTments database. Three 

major queries are used to a) retrieve student data detailing student, 

class, and school level characteristics for each student recorded 

prior to random assignment (see Table 1; field definitions are 

beyond the scope of this paper but are available in our glossary at 

[13] for additional reference), b) retrieve problem level data (see 

Table 3), and c) detect the problem set structure (i.e., the paths 

depicted in Figure 1) for each student with logged data. These 

three queries provide ALI with the information necessary to 

establish reports and conduct automated analysis. By working 

closely with researchers throughout the development of ALI, we 

have designed four different universal data representations in an 

attempt to meet dynamic research needs. Subsets of data 

exemplifying each type of report are provided below. Table 2 

shows fields typical to the Action Level file. This file offers the 

finest granularity of data logged by ASSISTments as a student 

works through an assignment. Each row provides information 

pertaining to a single step within a problem (i.e., when the 

problem is initiated, or when the student asks for a hint).  A subset 

of the Problem Level file is depicted in Table 3. This file provides 

the same data as that found in the Action Level file, but the 

granularity has increased. Each row provides information 

pertaining to a single problem, with actions collapsed across 

columns. Student Level files, as depicted in Table 4, offer the 

coarsest granularity of data reporting. In this type of file, each row 

provides information pertaining to the entire assignment for a 

single student. For each feature or action, problem information is 

presented across columns in the order in which the student 

experienced the assignment, with the number of columns for each 

feature extrapolated to the maximum number of problems 

experienced by any student in the file. An alternative version of 

Student Level data is also provided in which each student 

assignment is represented by a series of rows, each representing a 

feature for problems displayed across columns (akin to a pivot 

table of the file described in Table 4). Full examples of each data 

file are available at [13] for further consideration. Links to each 

data file are gathered and presented to the researcher in a single, 

organized communication, depicted in Figure 2 and discussed 

further in Section 3.1.5.  

When preprocessing is complete and all data files have been 

compiled, ALI sends analytic commands to Rserve, an extension 

to the R programming language that allows for other applications 

to call R functions via a TCP/IP connection [19]. The 

ASSISTments team created a client side API to interact with 

Rserve, allowing ALI to send requests to R.  Because Rserve is 

not multithreaded, several instances of Rserve run on separate 

ports on the ALI server. The server is designed to recycle existing 

connections, with a connection pool equal to the maximum 

number of threads used by ALI. This allows several data
 

Table 1. A theorized subset of student historical data. Each row contains student, teacher, and school characteristics linked to a 

particular student, using information sourced prior to random assignment. 

Student Class ID Grade School ID 
Guessed 

Gender 

Birth 

Year 

Prior HW 

Completion % 

Prior Class HW 

Completion % 

Normalized HW 

Mastery Speed 

A 1007475 8 5597 Male 2001 0.83 0.88 0.33 

B 1180278 8 5597 Male 2001 0.76 0.88 0.03 

C 1180278 8 5597 Male 2001 0.76 0.88 0.03 

D 1322778 7 2342 Female 2002 0.95 0.97 -0.39 
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Table 2. A theorized subset of an action level data file. Each row represents a single action within a single problem as experienced 

by a student. This is the finest granularity of data reported by ALI. 

Student Problem ID Sub-Problem ID Order Action Type Timestamp Answer Correctness 

A PRAUVJS 806533 1 Start 08/26/15 15:25:26 -- -- 

A PRAUVJS 806533 2 Hint 08/26/15 15:25:52 -- -- 

A PRAUVJS 806533 3 Answer 08/26/15 15:26:40 18.2 TRUE 

A PRAUVJS 806533 4 End 08/26/15 15:26:42 -- -- 

A PRAVKJX 833840 1 Start 08/26/15 15:26:43 -- -- 

  

Table 3. A theorized subset of a problem level data file. Each row contains all the information linked to a single problem as 

experienced by a student. This is a popular form of data for student modeling and analytics. 

Student Assignment ID Problem ID Correct Answer  Hints Attempts Start Time End Time 

A 1007475 PRAUVJS 1 18.2 0 1 08/26/15 15:25:26 08/26/15 15:26:42 

A 1007475 PRAVKJX 1 14.3 0 1 08/26/15 15:26:43 08/26/15 15:27:45 

A 1007475 PRAVKHT 1 6.4 0 1 08/26/15 15:27:50 08/26/15 15:28:47 

B 1180278 PRAUVJX 0 22.8 2 3 08/26/15 17:14:22 08/26/15 17:15:42 

B 1180278 PAVKGZ 0 7.2 0 2 08/26/15 17:15:43 08/26/15 17:17:31 

  

Table 4. A theorized subset of a student level data file. Each row contains all information linked to a single student’s experience of 

the problem set. Assignment information is presented across columns in the order in which the student experienced problems. 

Student Assignment ID Late Mastered Correct Q1 Correct Q2 Correct Q3 Answer Q1 Answer Q2 Answer Q3 

A 1007475 1 1 1 1 1 18.2 14.3 6.4 

B 1180278 0 0 0 0 1 17 14.1 6.4 

C 1180278 1 0 0 1 -- 24.6 14.3 -- 

D 1322778 0 1 1 1 1 18.2 14.3 6.4 
 

analysis reports to occur simultaneously, all using different 

Rserve connections. This approach lowers the turnaround time 

when a researcher actively requests data. It also keeps weekly 

reporting as efficient as possible, as all datasets in ALI’s study 

repository are assessed weekly for potential reporting. 

Smart Structures 
In order to determine what to analyze, ALI must first process the 

structure of a study and trace each student’s path through the 

assignment (as previously discussed in relation to Figure 1). As 

ALI parses the assignment’s structure, the infrastructure is able to 

make intelligent decisions upon meeting certain section types 

within the design. This is accomplished by recursively generating 

the assignment’s reported structure into tree form. Within the 

Problem Level data file presented in Table 3, each problem is 

labeled with a path, similar to that used when traversing a set of 

folders within an operating system. ALI steps through each 

problem path for each student to establish an intuitive structure of 

the study and to cluster students by condition. 

RCEs within the ASSISTments TestBed are designed by taking 

advantage of a variety of section types offered by the platform. 

The “If-Then” routing discussed in Section 1.2 was an example of 

a section type. When ALI observes an If-Then structure that 

issues a routing standard like a “Video Check,” the infrastructure 

intelligently conducts its analyses on students assigned to the 

study and disregards students routed to alternative content.  

Similarly, studies often employ parallel experimental and control 

conditions delivered using a section type referred to as a “Choose 

Condition.” This section type is used to drive random assignment. 

The “Choose Condition” depicted in Figure 1 included two 

parallel conditions: an assignment with video content and a 

control assignment with traditional text content. Currently, in 

order for ALI to recognize an assignment as a research study, a 

“Choose Condition” must be present when mapping the 

assignment’s structure. ALI then assesses logged data within each 

condition and considers any section immediately following these 

conditions as a subsequent posttest (see Figure 1). Using this 

information, ALI is able to aggregate statistics and perform a 

selection of simple analyses across problems and students.  

It is important to note that research designs within the 

ASSISTments TestBed can grow far more complex than the 

simple structure presented herein. When assignments include 

nested section types and multiple “If-Then” routing standards, 

ALI currently has difficulty interpreting condition and isolating 

posttest content. In its current form, ALI is only meant to assist 

researchers with the analysis of common design patterns. Future 

work, discussed in Section 5, will expand ALI’s ability to 

intelligently parse studies using tagging rules set forth by the 

researcher. 

Selection Bias 
After establishing a study’s structure and sample distribution, ALI 

is able to assess assignment completion rates across conditions 

and alert researchers to potential threats to internal validity due to 

selection bias. ALI records the observed number of students in 

each condition that began the assignment, and considers logged 

assignment end times to consider the proportion of students that 

ultimately completed the assignment. The observed distribution is 

then compared to the expected distribution of proportional 

attrition in a normal sample. A Chi-squared analysis is used to 

determine if the observed distribution of attrition significantly 

differs from the expected distribution. ALI then flags conditions 

that have a reliably different attrition rate and alerts the researcher 

of a potential threat to internal validity. Without considering 

differential attrition across conditions, an analysis of posttest 

performance may inaccurately suggest the significant effect of a 

particular condition that was actually driven by the 

disproportionate loss of weaker students. This simple analysis, 

presented to researchers as shown in Figure 3, may help even the 

most seasoned experts to accurately assess their sample. It is 

important to note that while ALI provides this warning, the 

infrastructure still releases all data to the researcher and never 

prohibits the researcher from further analysis. The goal of ALI’s 

selection bias assessment is not to impede or prevent analysis, but 

rather to advocate sound analytic practices. 
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Raw Data Files 
 

Raw data files contain the logged information for each student that has participated in your study. We provide this data in a variety of formats, as explained 

below, to assist in your analytic efforts. We use Google Docs to share these files with you. If you would like to process these files manually, we recommend 

downloading the CSV file of your choice and saving the file as an Excel spreadsheet or workbook to retain formatting and formulas. If you will be passing 

the file directly to a statistical package, downloading the CSV to a convenient location should suffice. 
 

For a field glossary and tutorials on how to read each type of file, visit our Data Glossary. 
 

Historical Data 

Covariate File - A collection of useful covariates for the students participating in your study. This file includes student level variables (i.e., gender), class 
level variables, (i.e., homework completion rates), and school level variables (i.e., urbanicity). Click here for a tutorial on how to link this file to your 

experimental data. 
 

Experimental Data 

1. Action Level - One row per action per student; the finest granularity. Students participating in your study have performed 13,655 actions (e.g., 
beginning problems, attempting to answer problems, asking for tutoring, and eventually completing problems). 

2. Problem Level - One row per problem per student. Students participating in your study have completed 2,280 problems. The flow through a single 

problem incorporates many actions, resulting in a coarser data file (fewer rows). 
3. Student Level - One row per student; the coarsest granularity. Columns are laid out in opportunity order to depict the student’s progression through the 

problem set. Problem level information is expanded to one column per problem per field (column heavy). 

4. Student Level + Problem Level - One row per field per student. Columns are laid out in opportunity order to depict the student’s progression through 
the problem set. An alternative view of student level information (row heavy). 
 

Figure 2. A thoroughly developed universal reporting of logged data from students participating in RCEs. Each file presented here 

is discussed further, including depictions of file subsets, in Section 3.1.1. 

 
 

The Assessment of Learning Infrastructure (ALI) 
 

Completion Rates 

Students that have started your study: 329 

Students that have completed your study: 251 
  

Bias Assessment 
Before analyzing learning outcomes, we suggest first assessing potential bias introduced by your experimental conditions (i.e., examine differential attrition). 

The table below reports the number of students that have completed your study, split out by experimental condition. 
 

Condition Started (n) Completed (n) Completed (%) 

Group A – Experiment 1 109 80 73.39 

Group B – Experiment 2  87 60 68.97 

Group C – Control  99 89 89.90 

Total 295 229 77.63 
  

NOTE: A significant difference was found between observed and expected completion rates across conditions, χ2 (2, N = 295) = 13.467, p < .01. This means 
that a selection effect may have occurred. Hypothesis testing with regard to posttest scores has not been conducted out of an abundance of caution. 
 

Mean and Standard Deviation of Posttest Score by Condition 

To examine learning outcomes at posttest, an analysis of means was conducted across conditions. The table below reports mean posttest score and standard 

deviation for each condition. This information was sourced from our automated posttest sub-report. 
 

 Completed (n) Posttest Score* 

Group A – Experiment 1 80 34.40 (4.34) 

Group B – Experiment 2 60 32.95 (3.89) 

Group C – Control  89 44.11 (3.72) 

Total 229 37.15 (3.98) 

* Presented as Mean (SD). 
 

Figure 3. Current ALI analytic reporting.  Available analyses include a Chi-squared test comparing the observed and expected 

sample distributions, simple hypothesis testing, and an analysis of means on posttest performance between conditions. Note that 

these analyses are currently driven by the structure of the assignment as parsed by ALI from Problem Level data.  Future work 

includes allowing researchers to tag their study with items of interest to automate analysis with greater sophistication.  

    

Simple Hypothesis Testing 
After conducting a selection bias assessment, ALI progresses to a 

set of simple hypothesis tests with regard to posttest performance. 

If ALI detects a posttest section when parsing an assignment’s 

structure, the infrastructure compares performance across 

conditions by referring to the previously aggregated group 

distributions. ALI approaches posttest analysis much like a 

researcher would: if only two conditions are detected within the 

study, ALI conducts a t-test, while if more than two conditions are 

detected, ALI conducts an Analysis of Variance (ANOVA). ALI 

currently has the API to support simple univariate and 

multivariate analyses including ANOVA, ANCOVA, MANOVA, 

and MANCOVA. ALI stores all input parameters for a given 

statistical test in a single object. The parameters are extracted 

from this object and transformed into the appropriate R function 

calls through the Rserve API communication. Results are 

accumulated and presented to the researcher alongside an analysis 
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of means, as shown in Figure 3, allowing the researcher to 

observe the direction of the reported effect. Note that in the 

present example, ANOVA results are not presented to the 

researcher out of an abundance of caution due to ALI’s detection 

of a potential selection bias. Our goal in restricting this 

information is strictly in the promotion of sound scientific inquiry. 

It should also be noted that covariates are not presently considered 

in ALI’s hypothesis testing. Future work will control for student, 

class, and school level characteristics sourced from the historical 

student data file (see Table 1) by using ANCOVA or MANCOVA 

approaches in an attempt to explain additional variance in learning 

outcomes. 

Data Storage and Researcher Output 
When ALI’s automated analysis is complete, ALI stores all data 

files and analytic output on Google Drive in archival quality. This 

data cannot be altered but can be downloaded by anyone. For 

active studies, copyright protection will be placed on new data 

analysis reports for one year from the study’s initial run date.  

This means that researchers will have a full calendar year to 

publish on their findings before their data becomes freely 

available to the public.  

ALI communicates to researchers via email, providing a link to a 

stable URL for a Google Doc housing that week’s data analysis 

report. The Doc contains links to all raw data files, as shown in 

Figure 2, and provides automated analysis as depicted in Figure 3. 

The creation of this Google Doc is automated, based on an HTML 

template file that uses custom tagging conventions to insert 

variables with dynamic text or data. Using this method, the same 

report can be generated multiple times or across multiple 

assignments with changes to only the pertinent information. This 

allows for customized reporting based on the results of ALI’s 

analysis. The Google Doc report also provides researchers with 

links to additional resources including a glossary explaining 

features of the data and video tutorials on how to understand each 

file type (available at [13]).  

When researchers are ready to publish findings, a condition of 

working with the ASSISTments TestBed requires that they 

include a reference in their work to the stable record from which 

they sourced the data files used for final analyses. This approach 

allows reviewers and secondary researchers to gain access to raw 

study data, thereby encouraging replication and open science 

[11]. In addition to the raw data, secondary researchers will also 

be able to use these references to access ALI’s analytic report, 

including all automated analyses. 

ANALYSIS AT SCALE 
Although ALI’s analytic structure is still somewhat rudimentary, 

considered at scale, comparisons of findings from multiple studies 

can offer substantial insights for the ASSISTments platform and 

in more general terms, for the learning analytics community. By 

simultaneously examining attrition outcomes across studies it 

becomes possible to make claims about the quality of 

interventions that crosscut multiple skills. As ALI’s analytical 

capabilities increase, analysis at scale will grow even more 

powerful.  

As a proof of concept of the potential benefits of automated 

analysis at scale, ALI was run across a special dataset including 

25 studies that are currently running within ASSISTments. This 

file was created for another sophisticated approach to modeling 

student performance across multiple studies [18], but serves as a 

perfect example of ALI’s capabilities at scale. In the spirit of open 

data, this file is available for reference at [12]. The studies in this 

file were selected from a group of 126 studies currently running 

within the ASSISTments platform based on the following criteria: 

 Studies selected contained at least 50 students within each 
condition that completed the assignment. 

 Studies selected were designed within Skill Builders, a 

mastery learning based assignment that considers predefined 

thresholds for student completion (i.e. by default, to 

complete the assignment the student must solve three 
consecutive problems accurately).   

As most of the studies in this file were built prior to the 

implementation of automated path-logging (which drives ALI’s 

ability to read in the structure of the study and infer a condition 

for each student), condition was manually traced and logged for 

each student based on his or her observed problem sequence. A 

number of these studies were also built before the availability of 

If-Then routing and subsequent checks for internal validity (i.e., 

the “Video Check” explained in connection to Figure 1). As such, 

it is difficult to tell if students experienced technical difficulties 

during the course of a condition. To analyze this dataset using all 

of the capabilities that ALI has with recently designed studies, we 

manually notated flags regarding the observed fidelity of 

conditions. This flagging also included whether students ‘tested 

out’ of the condition experience (i.e., if a student was assigned to 

a condition in which the treatment was presented through 

feedback but answered the first 3 consecutive problems 

accurately, they did not ultimately experience the treatment). As 

only three of the studies in this file contained valid posttest 

information, we only present ALI’s selection bias assessment for 

consideration at scale (see Table 5).  

The 25 studies presented in Table 5 span a variety of 

investigations including: assessing the effect of various types of 

video tutoring (i.e., pencasts, teacher recorded instruction, online 

resources) compared to traditional text-based tutoring across 

multiple designs (i.e., using scaffolding, using hints, as an 

intervention to wheel-spinning [2], or provided based on student 

choice), investigating the manipulation of content (i.e., 

interspersing learning with humor through comics in content or 

feedback, asking students to gauge their confidence in solving 

problem content, and altering student mindset (as inspired by [4]), 

and challenging cognitive principles (i.e., mental representations, 

and alterations in the consistency of math equations). Assignment 

names, as presented in Table 5, are tagged with the grade level 

and domain of the skill content as defined by Common Core State 

Standards [10]. Despite differences in domain and 

experimentation, ALI is able to provide a sense of condition 

quality across studies at scale. 

The results of the simple Chi-squared analyses in Table 5 may not 

seem significant at first, but are actually quite insightful at scale. 

In studies with two conditions, experiment vs. control (20 

comparable sets of the 25 shown in Table 5), the control groups 

showed less attrition in 15, while the experimental groups showed 

less attrition in only five. On its own, this comparison suggests 

that experimental conditions correlate with higher attrition rates. 

However, this attrition is only significantly different than that of a 

normally distributed sample in five studies  (p < .05), with 

experimental conditions showing significantly more attrition than 

expected in four studies, and control conditions showing 

significantly more attrition than expected in only a single study. 

At scale, these analyses can help researchers and developers 

determine which interventions are effectively retaining students, 
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Table 5. ALI’s Bias Assessment at Scale - Observed Distributions and Chi-Squared Analyses Across 25 Problem Sets 

Problem Set by Condition Started (n) Completed (n) Completed (%) df χ2    p 

Multiplying Mixed Numbers 5.NF.B.4a 775 466 60.13 1 5.30 0.021* 
      Control 403 258 64.02    

      Experiment 372 208 55.91    

Understanding Vocabulary About Circles G-C.A.2 695 674 96.98 1 4.87 0.027* 
      Control 330 325 98.48    

      Experiment 365 349 95.62    

Equivalent Expression 6.EE.B.4 273 240 87.91 1 0.39 0.532 
      Control 138 123 89.13    
      Experiment 135 117 86.67    

Writing Inequalities from Situations 6.EE.B8 627 539 85.96 1 2.21 0.138 
      Control 338 297 87.87    

      Experiment 289 242 83.74    

Dividing Mixed Numbers 6.NS.A.1 1864 1285 68.94 1 0.99 0.321 
      Control 943 660 69.99    

      Experiment 921 625 67.86    

Finding Expected Value SS.MD.B.5 457 337 73.74 1 0.06 0.802 
      Control 224 164 73.21    

      Experiment 233 173 74.25    

Conditional Probability SS-CP.A.3 515 366 71.07 1 0.70 0.401 
      Control 281 204 72.60    

      Experiment 234 162 69.23    

Permutations and Combinations SS-CP.B.2 540 456 84.44 1 0.00 0.958 
      Control 265 224 84.53    
      Experiment 275 232 84.36    

Basic Logarithm Manipulation F-BF.B.5 136 121 88.97 1 0.21 0.645 
      Control 62 56 90.32    

      Experiment 74 65 87.84    

Properties of Exponents 8.EE.A.1 545 435 79.82 1 0.24 0.626 
      Control 264 213 80.68    

      Experiment 281 222 79.00    

Intermediate Logarithm Manipulation F-BF.B.5 205 169 82.44 1 8.44 0.004** 
      Control 102 92 90.20    

      Experiment 103 77 74.76    

Solving abct = d LE.A.4a 147 122 82.99 1 0.01 0.914 
      Control 72 60 83.33    

      Experiment 75 62 82.67    

Finding Inverse Functions F-BF.B.4 301 143 47.51 1 3.32 0.068† 
      Control 145 61 42.07    
      Experiment 156 82 52.56    

Composition of Functions F-BF.A.1c 219 173 79.00 1 0.86 0.354 
      Control 118 96 81.36    

      Experiment 101 77 76.24    

Sequences F-BF.A.2 382 241 63.09 1 0.20 0.658 
      Control 198 127 64.14    

      Experiment 184 114 61.96    

Comparing Values - Multiplying by Fractions 5.NF.B.5a 129 121 93.80 1 1.59 0.208 
      Control 69 63 91.30    

      Experiment 60 58 96.67    

Converting Radians to Degrees F-TF.A.1 245 226 92.24 1 0.23 0.631 
      Control 129 120 93.02    

      Experiment 116 106 91.38    

Trigonometric Ratios G-SRT.C.8 307 266 86.64 1 0.91 0.341 
      Control 141 125 88.65    
      Experiment 166 141 84.94    

Pythagorean Theorem – Finding the Hypotenuse 8.G.B.7 447 349 78.08 1 6.40 0.011* 
     Control 237 174 73.42    
     Experiment 210 175 83.33    

Solving 1-Step Equations 7.EE.B.4a 928 818 88.15 1 0.01 0.934 
     Control 459 405 88.24    
     Experiment 469 413 88.06    

Prime Factorization 6.NS.B.4 1238 1058 85.46 2 0.97 0.616 
     Control  430 369 85.81    

     Experiment 1 399 345 86.47    

     Experiment 2 409 344 84.11    

Order of Operations (No Exponents) 7.NS.A.3 1231 1172 95.21 2 4.50 0.105 
     Group A - Consistent/Neutral 597 574 96.15    

     Group B - Inconsistent 300 287 95.67    

     Group C - Mixed 334 311 93.11    

Note. †p < .10, *p < .05, **p < .01. df = Degrees of Freedom. 
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Table 5. ALI’s Bias Assessment at Scale - Continued 

Problem Set by Condition Started (n) Completed (n) Completed (%) df χ2    p 

Multiplying Simple Fractions 5.NF.B.4a 598 559 93.48 3 1.54 0.673 
     Group A – No Choice + Text 142 131 92.25    

     Group B – Choice + Text 222 211 95.05    

     Group C – Choice + Video 76 71 93.42    
     Group D – No Choice + Video 158 146 92.41    

Rotations 8.G.A.3 306 186 60.78 1 0.82 0.365 
     Experiment 1 145 92 63.45    

     Experiment 2 161 94 58.39    

Reflections 8.G.A.3 239 171 71.55 1 0.17 0.680 
     Experiment 1 125 88 70.40    

     Experiment 2 114 83 72.81    

Note. †p < .10, *p < .05, **p < .01. df = Degrees of Freedom. 

 

and more importantly, critical design issues that drive students 

away. As many of these 25 studies were designed prior to the 

implementation of internal validity checks (i.e., assessing a 

student’s technical abilities with video content), we believe that 

the analyses in Table 5 suggest higher attrition in experimental 

conditions because certain students were assigned to content that 

they had difficulty accessing. This finding would not likely hold 

true when considering studies run more recently, suggesting the 

importance of the recent implementation of If-Then routing. 

Future work with ALI at scale will help to confirm this 

hypothesis. Usability is a concern within any online learning 

system, and providing students with access to default assignments 

when they cannot access enriched content is a safe practice.  

It is also important to consider the percentage of students 

excluded from analysis prior to the assessments presented in 

Table 5. Within all sets, an average of 22.85% of students did not 

actually experience condition and were removed from the sample 

prior to analysis. Students that fail to experience interventions 

implemented within feedback (due to mastery or performance at 

ceiling) provide valuable information to researchers regarding the 

raw (inflated) sample size required to achieve statistical power. 

Certain elements of a study’s design, including the content 

domain (i.e., some topics are easier than others and students 

require less feedback on average), and the type of feedback 

provided (i.e., on demand feedback requires a larger raw 

population than feedback provided automatically upon the 

student’s incorrect response), can have a significant impact on the 

raw sample size required to attain enough treated students to 

reliably detect effects. RCEs that consider interventions 

implemented strictly within problem content have fewer issues 

with regard to raw sample sizes as all students experience the 

intervention regardless of performance, easing potential issues 

surrounding intent-to-treat analyses. 

Finally, analyzing the selection effects inherent to multiple 

assignments simultaneously allows ASSISTments to evolve more 

rapidly, providing benefits to users, researchers, and the learning 

analytics community. As the experimental conditions in Table 5 

exhibited only 1.5% greater attrition on average than control 

conditions, it is possible that the benefits of these experimental 

interventions may still outweigh the increase in attrition. 

Additional data mining would be necessary to determine a 

standard at which the potential for emphasized learning gains 

within an experimental condition no longer outweighed the 

potential for increased attrition. However, regularly conducting 

this type of broad scale analysis across assignments could quickly 

isolate studies with conditions considered extremely detrimental, 

and the condition could be discontinued in order to limit the 

intervention’s negative impact on students. ALI’s automated 

analysis makes the process of intervention validation dramatically 

more efficient and robust. From these findings, and from future, 

more powerful iterations of ALI’s at-scale capabilities, 

ASSISTments will be able to deliver rapid iterations of 

interventions with the goal of optimizing students’ interactions 

with the system through enhanced usability and strengthened 

content and delivery methods.  

LIMITATIONS & FUTURE WORK 
As ALI is constantly evolving and gaining new capabilities, the 

version of the infrastructure presented here carries a number of 

limitations. As made apparent by the complex methods applied to 

consider ALI’s effects at scale, the infrastructure is currently only 

able to recognize studies with logged path information. The 

implementation of path logging occurred in March 2015, and ALI 

is only able to reliably analyze studies that were created after this 

implementation. This limitation is compounded by ALI’s 

inferences of the study design and posttest items. As studies 

within the ASSISTments TestBed can be designed using a number 

of complex, nested structures, ALI’s current decisions about study 

designs are not exceptionally intelligent. A serious limitation of 

the work presented herein is that the infrastructure is currently 

only able to reliably recognize and analyze study designs with 

simple structures (i.e., “If-Then” routing, a single “Choose 

Condition,” and a clear cut posttest section that directly follows an 

intervention).  

While these limitations influence ALI’s significance for the 

learning analytics community, they can easily be resolved through 

future work. One of our current focuses is the implementation of a 

tagging system that will allow researchers to identify pertinent 

sections of a study prior to its distribution. Using unified naming 

structures for the design of assignment sections within the 

building process (e.g., [experiment], [control], [posttest]), 

researchers will essentially be able to tell ALI exactly how to 

approach analysis. This will allow ALI to provide customized 

analysis and, potentially, refined data files that are preprocessed 

according to the researcher’s distinct needs. Tagging will also 

allow for analyses that collapse similar treatment groups (i.e., 

experimental group 1 and experimental group 2 could both be 

tagged with [experiment] to denote that ALI should collapse these 

conditions), that isolate unconventional posttest problems (i.e., 

problems falling within a section that does not immediately follow 

a “Choose Condition”), and that assess growth models of student 

performance (i.e., by measuring pre- to posttest gains, or through 

more complex hierarchical models). 

Future work for the ALI team also includes defining a powerful 

list of student, class, and school level variables for use as 

covariates in statistical analyses. Variables that have already been 
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established include measures of each student’s prior performance 

within ASSISTments, measures of their completion rate on 

classwork and homework assignments, and normalized values that 

compare the student’s performance and attrition against that of 

their class. As such, future iterations of ALI’s at-scale capabilities 

will also be able to control for particular student characteristics in 

order to assess the true variance established by experimental 

interventions. Additional content is also being built into 

ASSISTments and made available in the TestBed to collect self-

report measures from students for use as possible covariates. Rich 

covariates will provide ALI with the ability to examine the effects 

of experimental interventions across groups while controlling for 

substantial variance, making automated analyses far more robust. 

CONTRIBUTION 
The learning analytics community will benefit greatly from the 

Assessment of Learning Infrastructure (ALI) and the promotion of 

similar infrastructures for other online learning platforms. 

Currently, very few learning technologies serve as scientific tools 

for researchers to conduct and communicate the findings of sound 

educational research at scale. By allowing researchers to conduct 

research within authentic learning environments through 

classwork and homework completed within online learning 

platforms, it is possible to collect rich log files that can be 

reported in universal formats and analyzed using automated 

processes. As a community, a strong focus on providing universal 

measures and analyses from these platforms will strengthen the 

validity of findings from a broad range of interventions that seek 

to isolate best practices in education. The broad dissemination of 

vast anonymized educational datasets will also propel the field 

toward more transparent, replicable, and reputable scientific 

practice, improving learning analytics for all.  
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