
Worcester Polytechnic Institute
Digital WPI

Major Qualifying Projects (All Years) Major Qualifying Projects

April 2015

ASSISTments Smart Reporting
Keaton Robert Smith
Worcester Polytechnic Institute

Yan Yan
Worcester Polytechnic Institute

Follow this and additional works at: https://digitalcommons.wpi.edu/mqp-all

This Unrestricted is brought to you for free and open access by the Major Qualifying Projects at Digital WPI. It has been accepted for inclusion in
Major Qualifying Projects (All Years) by an authorized administrator of Digital WPI. For more information, please contact digitalwpi@wpi.edu.

Repository Citation
Smith, K. R., & Yan, Y. (2015). ASSISTments Smart Reporting. Retrieved from https://digitalcommons.wpi.edu/mqp-all/3468

https://digitalcommons.wpi.edu?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3468&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wpi.edu/mqp-all/3468?utm_source=digitalcommons.wpi.edu%2Fmqp-all%2F3468&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalwpi@wpi.edu


Project Number: NTH - AAPZ 

 

 

ASSISTments Smart Reporting 

 

 

A  Major Qualifying Project Report:  

Submitted on April 30, 2015 

To the Faculty of the  

WORCESTER POLYTECHNIC INSTITUTE  

 

In partial fulfillment of the requirements for the Degree of Bachelor of Science 

By: 

______________________________________ 

Keaton Smith 

 

______________________________________ 

Yan Yan 

 

Advised by Professor Neil Heffernan 

  



Abstract 

This project extends the existing ASSISTments system for online learning to provide 

better feedback information to teachers using the service. Specifically we set out to design a 

new reporting mechanism so that teachers can see better information regarding a class’s 

performance on a particular assignment. To achieve this goal, we implemented a new smart 

reporting scheme which allows for customization and better display of various types of 

assignments in ASSISTments. 

  



Acknowledgements 

We would like to thank Professor Neil Heffernan for his support and assistance 

throughout this project. We also would like to extend our gratitude to David Magid, Cristina 

Heffernan, Andrew Burnett, Chris Donnelly, Doug Selent, Yang Lu, Korinn Ostrow, and the 

rest of the ASSISTments team at WPI for their continual assistance and support throughout 

this project. 

We also acknowledge funding for ASSISTments from the NSF (1316736, 1252297, 

1109483, 1031398, 0742503, 1440753), the U.S.  Department of Education GAANN 

(P200A120238), ONR’s “STEM Grand Challenges,” and IES (R305A120125, R305C100024). 

  



Contents 

Abstract ..................................................................................................................................................................... 2 

Acknowledgements .............................................................................................................................................. 3 

Contents .................................................................................................................................................................... 4 

Table of Figures ..................................................................................................................................................... 5 

1.  Introduction ...................................................................................................................................................... 6 

2.  Background ........................................................................................................................................................ 7 

2.1: The ASSISTments service ............................................................................................................... 7 

2.2: Current reporting system .............................................................................................................. 8 

2.3: Motivation for a new report ....................................................................................................... 11 

3.  Methodology................................................................................................................................................... 15 

3.1: Requirements ............................................................................................................................. 15 

3.1.1: Report customization ........................................................................................................... 15 

3.1.2: Backwards compatibility ...................................................................................................... 16 

3.2: Development .............................................................................................................................. 17 

3.2.1: Build environment ............................................................................................................... 17 

3.2.2: Integration with the existing ASSISTments system ................................................................ 18 

3.2.3: Project design ...................................................................................................................... 18 

4.  Results .............................................................................................................................................................. 21 

4.1: Smart reporting mechanism ........................................................................................................ 21 

4.2: Documentation ........................................................................................................................... 23 

5.  Future Work ................................................................................................................................................... 25 

5.1: Expansion to more report types .................................................................................................. 25 

5.2: Enhanced report interface .......................................................................................................... 25 

5.3: Full system integration ................................................................................................................ 26 

5.4: Allowing users to tag reports ...................................................................................................... 27 

5.5: Implementation of other tagging ................................................................................................ 27 

6.  Conclusion ....................................................................................................................................................... 29 

 

  



Table of Figures 

Figure 1: A current teacher item report ....................................................................................................... 9 

Figure 2: A current teacher skillbuilder report ...................................................................................... 10 

Figure 3: Section structure of a research problem set ........................................................................ 12 

Figure 4: Completion report for a research problem set .................................................................... 12 

Figure 5: Item report for a research problem set .................................................................................. 13 

Figure 6: Web GUI to specify sections to report on .............................................................................. 22 

Figure 7: Web output of a smart report .................................................................................................... 22 

Figure 8: A current report in ASSISTments ............................................................................................. 25 

 

  



1.  Introduction 

The field of education is increasingly moving toward online platforms. With the 

development of various technologies to enable learning in a web atmosphere, teachers and 

students can take advantage of data, services, and educational platforms across the 

internet. Such online tools require continual development and improvement to achieve the 

goal of bettering the educational process for everyone involved. This means analyzing user 

data, determining the needs of students and teachers, and utilizing the full capabilities of 

computer systems to provide the best possible feedback during the learning process. 

One such service is ASSISTments, an online tutoring tool which has been in 

development at the Worcester Polytechnic Institute since 2003. ASSISTments aims to 

provide useful information to not only teachers and students but also parents, school 

administrators, and educational researchers to facilitate better learning in and out of the 

classroom. This means that the developers of ASSISTments are largely concerned with 

logically and simply presenting the data at their disposal to anyone involved in the system. 

One such mechanism is a report for teachers which displays information on a class’s 

performance on a particular assignment. The improvement of these reports is the focus of 

this MQP so teachers can have a better understanding on how their classes learn best. We 

explore this relationship by analyzing the current reporting mechanism for teachers and 

outlining requirements for an improved reporting scheme. Next we detail our 

implementation of this scheme and analyze it based on the original requirements and 

integration into ASSISTments. Finally we discuss plans for future upgrades and extensions 

on our system. 

  



2.  Background 

This section of our paper details the background knowledge we needed to know 

before beginning our project and serves to set up the rest of this paper. We begin with an 

overview of the ASSISTments service and its philosophies so we can keep in mind the 

overall goals of the system throughout. We next detail the current structure of reports for 

teachers, and finally move on to the motivation for an overhaul of this system, which 

becomes the crux of our project. 

 

2.1: The ASSISTments service 

ASSISTments is a service being developed at Worcester Polytechnic Institute 

designed to improve the educational process by discovering how students learn best. It is 

primarily an online tool used by teachers to distribute content for their students, especially 

homework, quizzes, and tests. ASSISTments is based on the principle of providing feedback 

to students as they work, as studies have shown that this makes the learning process more 

effective. Such feedback in ASSISTments can take the form of educational videos, written 

hints on a problem, or reports on assignments as a whole. 

As such, within ASSISTments there is the capability for teachers and educational 

researchers to develop content for students to use. This content can then be shared across 

the entire ASSISTments user base, and other teachers and researchers on the site can 

assign it to their students or modify it to suit their needs. From a teacher’s perspective, this 

makes it easy to ensure students are learning according to the appropriate curriculum 

while also providing methods to avoid reinventing the wheel when developing assignments 

for students. From the perspective of the educational researcher, the large user base and 



capability for content sharing within ASSISTments delivers a useful platform for 

conducting studies regarding how students learn best. 

In regard to the content which can be distributed using ASSISTments, there are 

multiple different types of problem sets which can be built by teachers and researchers. 

These sets begin with simpler styles, which take a group of problems and present them to 

students in either a set or randomized order; these problem sets are known as linear sets 

or random sets, respectively. Skillbuilder problem sets are an extension of these two types 

which require a student to get three correct answers in a row to mark the set as completed. 

There is also support for problem sets which randomly assign each student to do 

one of several problems or sections (called choose conditions), or sets which 

deterministically assign students to specific content based on their answers to an initial 

problem or set of problems (called an if-then-else conditional). These two types of problem 

sets might be used by researchers who want to determine which of several techniques best 

facilitates student learning. 

  

2.2: Current reporting system 

Because of all the flexible content in ASSISTments, and keeping in mind that the 

system is largely data-driven in its philosophy, there is a necessity for ways to report that 

data to everyone involved in the process—from students to researchers to parents to 

teachers. Throughout this project we focus primarily on the reports given to teachers 

regarding class-wide assignments. 

Currently the teacher reports include two primary types of reports, each used for 

different types of problem sets. The first report we will discuss is known as the item report, 



which provides a problem-by-problem look at the performance of students in the class on a 

particular assignment. See figure 1 below for a screenshot of an item report of a standard 

assignment. 

 
Figure 1: A current teacher item report 

Each cell in the item report represents how a particular student did on a particular 

problem. It contains information including the answer the student gave and a symbol 

indicating correctness and completeness of the problem. Each column represents a single 

problem in the problem set as a whole, while each row represents a student. There are also 

cells which give the teacher information about class-wide data on each problem, including 

percent correct, possible correct answers, and potentially some common wrong answers 

given by students. The item report is currently typically used in problem sets which have a 

linear or random structure, since it is guaranteed that every student will see every problem 

and so the teacher will be able to easily make sense of the report. 

The other main type of report currently available in ASSISTments is the completion 

report, which in general provides information to teachers on an assignment level, as 

opposed to reporting on individual problems. There are several variations on the 

completion report, each providing different statistics to the teacher. As an example, 

consider one such variation, the skillbuilder report, in figure 2. 



 
Figure 2: A current teacher skillbuilder report 

Again, in a completion report, each cell represents information on a particular 

student’s performance. However, in this case that performance is measured with certain 

statistics for the entire problem set, each of which is assigned to a column in the report. 

Such statistics vary based on which style of completion report is being used, but in general 

can include completeness of the problem set, average correctness across all the problems, 

time spent on the assignment, and number of problems encountered by the student. 

Contrary to the item report, the completion report is typically employed by the system 

when reporting on assignments in which it is not guaranteed that every student will have 

encountered every problem, and so would not make sense to report on every problem from 

the teacher’s perspective. Examples on such problem sets include research studies 

performed with if-then-else or choose conditions, or skillbuilder sets, which contain dozens 

of problems but typically only show a fraction of those to each student before completion is 

awarded. 

The current reporting structure in ASSISTments makes use of the ASSISTments web 

service to build and render assignment reports for teachers. This process is done client-

side whenever a teacher asks to see a report for an assignment. Upon accessing the 



ASSISTments database to retrieve relevant information, the web service uses Ruby on Rails 

to consume the data and generate an appropriate HTML webpage to display the data in the 

form seen in figures 1 and 2. It is worth noting that the ASSISTments web service is a 

separate body of code than the ASSISTments API, a library of classes which makes up the 

server-side architecture of ASSISTments and are accessible over HTTP. 

 

2.3: Motivation for a new report 

However, the current system has some shortcomings, especially in dealing with 

research problem sets which incorporate if-then-else and choose conditions. As an 

example, take the research problem set displayed below in figure 3. This is a randomized 

control trial which aims to determine the effectiveness of video hints versus text hints in 

facilitating student learning, and as such has multiple branches of problems—some with 

video and some with text. In this case, currently the current system defaults to a 

completion report (see figure 4) which gives basic information about the problem set. But 

when compared to the complex structure of the research problem set these reports result 

in the loss of a great deal of information which might be useful to the teacher. 



 
Figure 3: Section structure of a research problem set 

 
Figure 4: Completion report for a research problem set 

There is also the capability in the current system for the teacher to gain more 

information than is displayed in figure 4. However, this information comes in the form of an 

item report which provides data for all students on all problems, even those which a given 

student would never see due to their placement within a choose condition. This results in 

information overload on the teacher, as such reports are confusing to parse and filled with 

unnecessary cells of data. To give an idea of the extent of this issue, an item report of the 

video versus text problem set is displayed below. 



 
Figure 5: Item report for a research problem set 

Clearly there is a need for a reporting mechanism which can capture some of the 

complex structure of research problem sets with multiple choose and if-then-else 

conditions. This report also needs to be understandable for the teacher, not rive with 

unnecessary data if students weren’t presented with some of the same problems. These are 

the issues we tackle in this paper with our smart reporting mechanism, which aims to 

replace the current teacher reporting system within ASSISTments. 

A secondary motivation for a new reporting system has come about due to recent 

expansions of the ASSISTments user base. These expansions come in the form of students 

and teachers looking to use tools provided by ASSISTments through a new protocol called 

ASSISTments Direct. This protocol enables students to complete assignments via links 

distributed by teachers without needing an account or logging in to the ASSISTments web 

platform. 

To better service users of ASSISTments Direct, it is desirable to have a new 

reporting scheme which is modular and separate from the web service itself. Such a 



separation would make it easier in concept for report information to be distributed to 

involved parties. As we will discuss later, our smart reporting mechanism is designed with 

this philosophy in mind. 

  



3.  Methodology 

In this section, the methodology of creating smart reports will be discussed.  Firstly 

we state the requirements which smart reports should fulfil, and then describe the actual 

development of smart reports.  There we mention the setup and the build environment we 

used as well as the integration of the smart reporting with the existing ASSISTments 

system.  Finally, we end with an overview of all the classes, data structures, functions, and 

algorithms we built to create the smart reports.  

 

3.1: Requirements 

In developing the smart reporting system, we were in close collaboration with the 

rest of the ASSISTments development team to ensure we were on the right track. 

Throughout this communication we came up with two main requirements for our system, 

given its goal to handle all types of problem sets. We wanted to include the ability for 

creators of assignments to customize their reports along with backwards compatibility 

with assignments created before the idea for our system. These are detailed below. 

 

3.1.1: Report customization 

As described above in section 2.3, the major motivation behind smart reporting is to 

be able to handle many different styles and structures of assignments in ASSISTments. As 

an initial solution to this problem, we looked at implementing a set of rules which would be 

able to ascertain the appropriate way to report a particular section of a problem set based 

on if every child doing the assignment would encounter that section at some point. 

However, after careful consideration we decided this solution had the potential to be 



difficult to understand from a development perspective and so had a lot of possibilities for 

errors in reporting different assignments, especially with some of the more complex 

research problem sets. Therefore, as an alternative solution we decided to enable the 

builders of assignments and problem sets to customize how they were reported. 

This approach left a lot potential room for errors in our code, as we weren’t 

attempting to create some rules which would be robust enough to handle every use case of 

the system. It also created a lot of room for better information to appear in the reports for 

the teacher, as the builder of the problem set—the one who knew the structure the best—

would get to intelligently decide what made the most sense to report on. For example, 

maybe some sections in the set were simply ascertaining basic information, such as 

whether or not the students could view videos. In this system, the builder of the problem 

set would know that and be able to leave that section out of the final report. Thus 

ultimately we decided that being able to pick and choose the style and information included 

in the report was more important than a set of rules which tried to predict the correct 

output. 

 

3.1.2: Backwards compatibility 

We were aware, though, that we could not solely rely on the builders of problem 

sets to tell us exactly how assignments should be reported. If nothing else, we needed to 

maintain the ability to report on any problem set in ASSISTments before our reporting 

scheme was conceived. With that in mind, we decided also to develop a limited set of rules 

which could robustly handle any problem set but might not provide all the information that 

a problem set builder would desire. After discussion with the rest of the ASSISTments team, 



we arrived at this solution due to the fact that it would provide more information than the 

reporting scheme, and that the importance of displaying old assignments would become 

less and less important as time went on. We detail this default report structure more in 

section 3.2. 

 

3.2: Development 

In this section we detail our development process in building a smart reporting 

system. First we go over the environment we used to implement and test our code, and 

how that code needed to be integrated into the ASSISTments service. Finally we give an 

overview of all the code we wrote to build our smart reports and explain in general the 

purpose of all our functions and classes. 

 

3.2.1: Build environment 

The bulk of our development was done within the ASSISTments API, which is 

written solely in Java. To write this code we used the Eclipse IDE, configured to include 

copies of all the API code written up to the start of our project. We also installed a Tomcat 

server within Eclipse, which enabled us to test the portions of our code which required 

access to the ASSISTments database tables. 

Furthermore, to simulate the HTTP request which would be used by a client to 

access the ASSISTments API, we used the Postman extension in Google Chrome. Postman is 

a tool which allows developers to send customized HTTP requests and view their 

responses for testing. We also used Eclipse to develop a sample client webpage to display 

our reports, written in JSP. 



  

3.2.2: Integration with the existing ASSISTments system 

An obvious necessity of our system was ease of integration with the rest of the code 

for ASSISTments. To facilitate this, we designed our code to be similar in structure to other 

files within the ASSISTments API. We followed existing protocols when adding capabilities 

to our reporting mechanism with respect to database accesses and responses to HTTP 

request to ensure there would be as seamless an integration as possible. Furthermore, 

throughout our development process and our additions to the existing ASSISTments 

codebase, we ran tests to ensure that nothing we were doing was interfering with the rest 

of the system. 

Full integration with the ASSISTments web service is discussed in our future work 

later in this paper. For purposes of this project, in addition to developing within the API, we 

added a webpage to the ASSISTments Teacher Tracker (a separate service which provides 

information on users of the system) to display our reports. This we developed in much the 

same way as our API code, with an eye toward ensuring that our changes were both in the 

spirit of the system’s architecture and not interfering with the functionality of the existing 

code. 

  

3.2.3: Project design  

As Java is an object-oriented language, the smart reports we generated are 

essentially Java objects, and the data they contain are also in the form of objects.  In this 

section we talk generally about the process of utilizing these classes to create a smart 



report.  For a complete and detailed look into all the classes and files which are part of this 

project, see appendix A. 

The process of creating a smart report begins when the ASSISTments API receives 

an HTTP request from a client who wants a report on a particular assignment.  This request 

should be a POST request, which provides a reference to an assignment as well as an 

optional JSON string representing the desired reporting structure, known as a tagging 

object. 

From this point, we use various classes to access the ASSISTments database to get 

necessary information, including the students who were given the specified assignment, 

the problem logs representing their answers to each question in the assignment, and the 

structure of the sections within the assignment.  Using this information, we create a tree of 

sections and problems within the assignment.  The leaf nodes of this tree represent 

individual problems, and it is at these leaf nodes that we store the information on student 

progress on the assignment. 

Once this tree is created, we can then traverse it from the root section to build the 

smart report itself.  It is at this point that we consider the optional tagging object; if one is 

provided, we form reports on different sections in the tree according to that object.  

Otherwise, by default we create an item report for each section of linear or random 

problems, and completion reports on choose conditions, if-then-else conditions, and 

sections of skillbuilders (as described in section 2.1). 

After the tree is traversed, all the necessary reports for the sections within the 

assignment have been generated and added to a smart report which represents the report 

for the assignment as a whole.  At this point, that smart report is converted into the JSON 



format so it can be sent as a response to the original HTTP POST request.  This JSON can 

then be used by the requesting system to display the information contained within the 

report. 

  



4.  Results 

In the results section, the detailed architecture of the smart reporting mechanism is 

described, and the usage of smart reports is discussed.  The documentation of the smart 

report system API is in section 4.2 for future developers to further extend the system. 

 

4.1: Smart reporting mechanism 

At the end of our project, we had built a smart reporting mechanism which met 

many of the goals we outlined at the beginning of our project. We built a system which can 

generate intelligible information about many complex structures of problem sets in 

ASSISTments and do so in a way that it does not include unnecessary amounts of detail. Our 

system has the capability for customization in reporting style through inclusion of a tagging 

object, in which different reports encompassing different sections of a problem set can be 

described. Our system’s design is also created with global integration in mind in how we 

create and send data over HTTP, and thus could be easily integrated into new and future 

services like ASSISTments direct. 

Furthermore, for users to better understand the usage of our smart reports, we also 

created a simple web user interface built on top of the current TeacherTracker project to 

display how input and output of the smart reports looks.  This also allows the ASSISTments 

team to experiment with our smart reporting system and discover ways to enhance it prior 

to its full deployment onto the system. The following figures show the screenshots of this 

webpage. 



 
Figure 6: Web GUI to specify sections to report on 

 
Figure 7: Web output of a smart report 



In evaluating these results, we used two main metrics. First was our communication 

with the rest of the ASSISTments team, particularly Cristina Heffernan and Andrew 

Burnett, regarding the criteria they determined would be best from a teacher’s perspective 

in the smart reports. In that respect, we were able to create a system which met many of 

those criteria in simplifying the data displayed to teachers as well as providing intelligible 

data for all types of problem sets. Due to time constraints, we did not meet some of the 

other eventual goals of the system, including full ASSISTments integration, persistent 

storage of each assignment’s reporting scheme, and addition of more information and 

report types into our system. These are detailed below in our future work section. 

The second evaluation method we used was in the modularity of the system’s 

structure. For this we communicated largely with the chief software engineer on 

ASSISTments, David Magid, to ensure our code was developed in a way that supported 

future development and integration. By this standard our project performed well, as 

demonstrated both by our ability to separate the reporting structure from the web 

interface and the capability of our reporting mechanism to be used in service like 

ASSISTments Direct. 

 

4.2: Documentation 

To ensure future developers and users of ASSISTments are able to work well with 

our code, we both augmented our code with standard Javadoc-style comments and created 

or added to three external documents with relevant information about our system. The 

first of these is a document describing attributes of our tagging object so future developers 

can form similar objects to interface with our code. We also created a writeup describing 



how to test our code using the user interface we developed. Finally, we added to the 

existing ASSISTments API specification to record the appropriate HTTP requests to send to 

our code when requesting a smart report. 

  



5.  Future Work 

In this section, the potential improvements of different aspects of the smart 

reporting mechanism will be described, and directions of future projects that focus on the 

extension of our current system will be discussed. 

 

5.1: Expansion to more report types  

Currently the smart report can generate reports of three types, namely the item 

report, the completion report and the skillbuilder report. More report types such as the 

opportunity report and proficiency report exist in the ASSISTments system, which would 

be desirable to include in the smart reporting system as well.  As the aim for designing the 

smart reporting mechanism is to provide flexibility in generating reports, and given the fact 

that our code is extensible in handling new report types, it is possible for future developers 

to extend our project to provide support for currently missing and newly introduced report 

types at the assignment level. 

 

5.2: Enhanced report interface  

All the reports displayed in the ASSISTments website share a common style, and one 

example is shown in the figure below: 

 
Figure 8: A current report in ASSISTments 



As smart reports do not have the default style sheet used by the reports in the 

ASSISTments website, the style of the smart reports does not conform to the rest of 

ASSISTments system.  Thus, one potential improvement of the smart reports could be to 

unify the reporting style to fit the current ASSISTments environment.   

Furthermore, as previously described, we do provide various data regarding 

different aspects of students’ performance and the problems themselves in the JSON string 

sent out as the output of our system. However, in our current web user interface, we do not 

display them to the user.  One future project could focus on the better utilization of the 

underlying information provided by the smart reports to make the reports more 

informative and useful to teachers.   

 

5.3: Full system integration  

Currently our smart reporting system only serves as an external service to the 

ASSISTments website, such that it could only be accessed as an expanded feature external 

to assistments.org. As such, it is not available to users who simply log into the ASSISTments 

website and look for it in the drop-down menu showing all kinds of reports.  As the smart 

reports is designed to provide help to the teachers in better understanding the 

performance of the students, it could be a future project to integrate our smart report 

system into the ASSISTments website and make it the default way to generate reports on 

the teacher side. 

 



5.4: Allowing users to tag reports  

Another future direction could be to store and reuse tags that are created as the 

input for generating smart reports.  As in the current smart reporting system, the tagging of 

the problem sections is limited to a single use per reporting, and the user has to provide the 

same tagging mechanism each time if the smart report of certain format is needed for 

multiple times.  Storing tagging information in the database could resolve this problem, and 

this could be done by adding tagging feature in the builder of a problem set, so that the 

users could create and edit tags when they build or modify problem sets and assignments.  

By doing so, when a smart report is requested, the relevant tagging information could be 

retrieved from the database to facilitate users in creating association between problem 

sections and report types.   

 

5.5: Implementation of other tagging  

As previously discussed, through tagging, problem sections coming from different 

origins can be aggregated together to better classify the sections based on different user-

defined criteria.  It is also possible, as a future project, to redesign the tagging system 

within ASSISTments on the basis of problem sections, so that the tags themselves could 

serve as an informative way of representing the nature of certain problem sections, and 

also could exist independently to the reports.  In this manner, when the reporting of an 

assignment is to be done, tags related to the problem sections within such assignment 

could be retrieved to help teachers with better examining the report.  However, the way of 

reporting would not necessarily depend on the tags themselves, as the teacher could 

choose the sections to report independently of how the tags are constructed.  By doing so, 



the tags could be used to assist teachers in associating certain problem sections with 

similar ones, but teachers could still have the freedom of customizing report with any 

combination in the problem section level if they wish.  

 

  



6.  Conclusion 

The smart reporting mechanism as a concept and in our implementation has the 

possibility to provide a great deal of value to the ASSISTments platform. With the added 

information that our infrastructure can provide, teachers should be able to view statistics 

on student assignments in a more effective manner. Furthermore, the potential for 

customization of reporting structures in our system give more control to researchers and 

builders of problem sets, which in turn only makes the information feedback that much 

more valuable to teachers. Furthermore, our project is designed in a way which supports 

future expansion and modularity in the system, which only serves to heighten its potential 

for improvement. 

We as students have also learned a great deal throughout the development of this 

project. Through it, we have gained real-world software engineering experience in 

development of a feature addition to a marketed system and so learned how to program to 

fit specifications and requirements. The knowledge we have gained in working with such a 

large and long-standing system as ASSISTments is also particularly valuable, as 

programming in such large environments is the core of software engineering. And in 

through all this, we believe that we have laid the foundation for a potentially valuable 

addition to the ASSISTments service. 

  



Appendix A: Files added and modified 

 

New Data Structures  

SmartReportObject 

Path: org.assistments.domain.SmartReportObject 

SmartReportObject is the class that contains all needed information for the smart 

report, and is converted into JSON format before being sent as the response to the HTTP 

request.  It contains a list of AbstractBasicReport as reports to display and functions to add 

an AbstractBasicReport to the list.   

  

AbstractBasicReport 

Path: org.assistments.domain.AbstractBasicReport 

 AbstractBasicReport is an abstract class that should be extended by any actual 

report type object, and it contains variables shared by all report types as well as the 

functions that should be implemented differently based on the type of report.  Specifically, 

it contains a list of user IDs, a list of Section objects, and a string indicating the name of the 

report type.  The list of user IDs and the list of sections are needed in the constructor of the 

AbstractBasicReport.  It contains an abstract function named generateReport() to run the 

algorithm to create the report from all available data, and another abstract function named 

getReport() that returns a list of ReportObjectColumn that are useful in displaying the 

report.   

  



Section 

Path: org.assistments.domain.Section 

 The Section object represents a section of a problem set and a tree relationship 

between its sections.  One Section object corresponds to one row in the section table of the 

ASSISTments database.  Each Section object contains an ID, a type, a field to store the 

information regarding parent sections, a list of sections that represent all the children of 

this section in the tree, and a list of problem logs that are associated with this section. With 

this construction, it is easy for the developer to run an algorithm to process problem logs at 

the section level. 

For creating the Section object, the id number of the section, the parent section and 

the type should be specified in the constructor; if the section has no parent, the parent 

parameter can be set to null.  In terms of the functions, the Section class contains all getters 

and setters of all fields it has, along with a function named findByID(long id) to find a 

particular section by its ID number in this section tree, which is done by a breadth-first 

search and returns the found Section or the null value.  It also overrides equals() and 

hashCode() functions to allow comparison between different Section objects.   

  

Answer 

Path: org.assistments.domain.Answer 

 The Answer class is also a wrapper to store information on a particular problem.  It 

contains the correct answer or multiple correct answers of a given problem by having a 

problem ID field and a list of strings representing all correct answers of that problem.  In 

order to create the Answer object, the problem ID is needed in the constructor.  There are 



getters and setters for both problem ID and the correct answer list to allow the user to 

modify the object afterwards.   

  

TaggingObject 

Path: org.assistments.domain.TaggingObject 

 The TaggingObject class contains information related to the choice of tagging 

problem sections by the user for report customization. This information is provided in the 

form of a JSON string when a report is requested over HTTP. This is then converted into the 

real TaggingObject object to allow further processing.   

 The TaggingObject class only has one field, a list of ReportTypeRow objects, which 

will be discussed later.  For creating a TaggingObject, the list of ReportTypeRow could be 

passed in as the parameter to the constructor, and the constructor could also take no 

argument; in the latter case, the list will be initialized to contain no objects.  Functions are 

provided to view and manipulate these rows within the object 

  

ReportTypeRow 

Path: org.assistments.domain.ReportTypeRow 

 The ReportTypeRow class contains the information for associating a list of problem 

sections with a report type.  It is specified by the user as part of the TaggingObject JSON 

string passed in.  The ReportTypeRow object contains a string specifying the type of report 

and a list of Section objects as the sectionsToReport field, which are the problem sections 

that the user wants a report on.  The constructor of the ReportTypeRow requires the report 



type and the list of problem sections as parameters.  Functions are provided to manipulate 

the sections in the row, as well as to add new sections or count the number already there. 

  

ItemReportObject 

Path: org.assistments.domain.ItemReportObject 

 The ItemReportObject is one actual implementation of the AbstractBasicReport 

class, and it represents an actual Item Report.  This object contains the information needed 

to create and display an item report, and can be converted to JSON and sent as part of a 

response for a report request.   

 For correctly displaying an Item Report, the ItemReportObject class contains two 

extra fields in addition to the ones in the AbstractBasicReport.  One is a map that maps the 

problem ID to the correct answers, and the other is a list of ReportObjectColumn named 

columnList, which will be described later.  In order to construct an ItemReportObject 

object, the list of user IDs, the list of Sections, and the map containing answers of all 

problems within the sections are needed.  And when the constructor is called, the function 

generateReport() that implements the abstract function in the parent class will be called, so 

no other action is needed after the constructor of the ItemReportObject is called in order to 

run the algorithm to process information on students’ progress, associate that progress 

with problems, and generate the report. Furthermore, it is here that class-wide average 

statistics are calculated. Incidentally, the same procedure should also apply to other report 

types.   

  

  



ReportObjectColumn 

Path: org.assistments.domain.ReportObjectColumn 

The ReportObjectColumn class is created to represent one of the columns in a 

report, or essentially, the data for one problem or statistic.  If there are any header rows, 

this class can be extended to meet the need, just as the ItemReportColumn class that will be 

described later.   

 The ReportObjectColumn contains a map that maps the row headers to the cell 

contents, which is of type Object for further extension, and a string that represents the 

header of the column.  For constructing a ReportObjectColumn, a string as the header and 

the map of cell contents are required as parameters.  Getters and setters are provided to 

access and change data for individual cells in the column.   

  

ItemReportColumn 

Path: org.assistments.domain.ItemReportColumn 

 As previously described, the ItemReportColumn is the extension of the 

ReportObjectColumn that adds three fields as extra rows. These three extra rows are a 

problem average, common wrong answers, and the correct answer.  The constructor of the 

ItemReportColumn takes all needed arguments in the ReportObjectColumn as well as the 

value associated with the three extra fields, and the getter functions for the extra fields are 

also provided.   

  

CompletionReportObject 

Path: org.assistments.domain.CompletionReportObject 



The CompletionReportObject is another implementation of the AbstractBasicReport 

class, and it represents an actual Completion Report.  By converting it to JSON string, it can 

be sent as a part of an HTTP response to a report request and used to display a Completion 

Report. 

In addition to the fields of the AbstractBasicReport, the CompletionReportObject 

also contains a map which this time maps user IDs to a cell representing some aspect of 

their project on the assignment. In a similar way to the ItemReportObject, the constructor 

of the CompletionReportObject takes user ID list, the list of sections, the report type, and 

will call generateReport() function before returns, so that no extra step is needed after 

calling constructor to run the algorithm to generate the report.   

The CompletionReportObject also contains a getReport() function to report the list 

of columns, and a generateReport() function to process the data and construct the report.  

In the generateReport() function, the problem logs will be added to the problem section 

they belong to, and then the cellMap will be updated by iterating through all problem logs 

to add each student’s information as an entry to the map.  The Completion Report contains 

five columns, namely the completion status column, the percentage correct column, the 

problem indicating each student’s problem seen so far, the number of problems done 

correctly, and the time spent as a whole for each student.  In order to construct those five 

columns, five maps are created, and the information stored in the cellMap are processed to 

get the five values and added to each map accordingly.  Those maps are then added to the 

column list to serve as the actual columns of the report.   

  



CompletionReportCell 

Path: org.assistments.domain.CompletionReportCell 

 The CompletionReportCell class is created for better helping the creation of the 

Completion Report.  Each CompletionReportCell object is actually a row in the Completion 

Report, as it could be seen as a map of a student to the student performance data related to 

each column in the Completion Report.  It thus contains the student ID, the number of 

problems seen by the student, the number of problems done correctly, the total time spent, 

and information regarding which sections were encountered by the student in the problem 

set.  A CompletionReportCell object must be constructed by giving a student ID.  Methods 

are also provided to update information on each student’s statistics, as well as to access 

and retrieve that information. 

 

Modified files and classes:  

AssignmentDao.java 

Path: org.assistments.service.dao.jdbc.JdbcAssignmentDao 

 The function Section getProblemSectionsTree(long assignmentId) is added, which 

can create a tree of sections to represent a particular assignment.   

  

ClassDao.java 

Path: org.assistments.service.dao.ClassDao 

 The function List<Long> getStudentIdsFromClass(long classId) is added, which can 

return a list of student IDs from a given class ID.   

  



UserDao.java 

Path: org.assistments.service.dao.UserDao 

 The function List<Long> getUserIdsFromStudentIds(List<Long> studentIds) is 

added, which converts a list of student IDs to the corresponding user IDs.   

  

Added Dao files  

AssistmentToSequenceDao.java 

Path: org.assistments.service.dao.AssistmentToSequenceDao 

 This Dao file contains one function, long getSectionFromAssistment(long 

assistmentId), which can determine what section a given ASSISTment belongs to.   

  

ProblemDao.java 

Path: org.assistments.service.dao.ProblemDao 

 This Dao file contains one function, void setCorrectAnswers(Map<Long, Answer> 

answers), that can be used for getting the Answer object from the problem ID.  When this 

function is used, a map should be created and every problem ID that the user wants correct 

answers from should be added as the key, and the value associated should be an Answer 

object.  By calling this function, the correct answer field in the Answer object will be 

updated. 

  

Controller  

In order to proper handle the incoming HTTP POST request, the file 

SmartReportController has been created.  By following the Spring Framework controller 



routine, this class contains a function getSmartReport() to read an HTTP request entity and 

return a response.  The JSON representing a TaggingObject is provided as the HTTP request 

body, and a reference to a particular assignment is passed as the path variable.  Both these 

fields are needed as parameters of this function. 

In this file, multiple Dao objects are used to access the needed resources for further 

processing.  Specifically, all user information, problem logs and correct answers of all 

problems in the given assignment ID are retrieved, and to further map the relationship 

between sections and the problem logs, the association between ASSISTment IDs and 

sections are needed, which is also done by querying the database using Dao objects as 

described above. 

After being able to access all information needed, the section tree within the 

assignment will be constructed by calling the function getProblemSectionsTree() in the 

assignmentDao, which returns the root section of the entire tree.  Later this root section 

will be used to traverse the section tree in the way determined by different tagging rules to 

associate student problem logs with the appropriate sections.  Furthermore, these sections 

can be arranged according to the provided tagging object into the correct type of reports, 

and thus the list of abstract basic reports can be built to make the smart report. 

Based on the content of the tagging JSON string, the decision of whether to follow 

the given rule or the default rule to generate the report is made.  If the JSON String 

provided is not empty, the TaggingObject converted from the tagging JSON string will be 

consulted to determine the actual structure of the smart report; however if it is empty, the 

default algorithm for generating the smart report will be used. 

 



To begin the process of default tagging, we first traverse through the tree of sections 

and child sections which represents an assignment. At each node in the tree—representing 

a section—we check to see the type of section it was. If it is a linear section or random 

section we create an item report from the problems at that node. If, on the other hand, it 

was a choose condition, we generate a completion report from that data, since generating 

an item report might give us output similar to that in figure 5. We handle if-then-else 

conditions similar to choose conditions, except we also report appropriately on the “if” 

conditional (since that could be a problem set in and of itself). After traversing through the 

entire tree, in this manner we are able to form a reporting structure which had a section in 

the final report corresponding to each section in the problem set. 

After the section tree is traversed (whether with the default algorithm or by using a 

TaggingObject), the smart report is complete.  The smart report object is then converted 

into JSON.  Then the JSON string is returned as the response to the original HTTP request.  

The client can then inspect the received JSON string, parse it and utilize the information 

within to display the smart report. 


	Worcester Polytechnic Institute
	Digital WPI
	April 2015

	ASSISTments Smart Reporting
	Keaton Robert Smith
	Yan Yan
	Repository Citation


	

