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ABSTRACT 

This paper describes progress towards the development of a 

Framework for Computational Thinking (CT) from a 

Disciplinary Perspective. The work aimed at discovering 

how CT can be encouraged, taught and practiced within 

disciplines throughout primary and secondary education. It 

identifies an initial set of “elements” describing CT practices 

that bridge learning and working in highly sophisticated 

STEM environments and shares examples of these practices 

used by STEM professionals at work and developed by 

students in schools. It is hoped that this paper will provoke 

dialogue among educators advocating for CT as a core skill 

for all and will contribute to breakthroughs in thinking about 

how CT should be learned and assessed in and out of school. 
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1. INTRODUCTION 
The proliferation of new technologies has changed the way 

we live, learn, and work. Although the future of work is 

unclear, experts envision a new machine age, where 

technologies (sensors, communication, computation, and 

intelligence) are embedded around, on, and in us; where 

humans will shape technology and technology will shape 

human interaction; and where technologies and humans will 

collaborate to discover and innovate. In short—the Human-

Technology Frontier. 

Without question, the global workforce will need a new set 

of skills and competencies to succeed in the future work 

environments on this frontier—that feels closer with each 

new technological advance. A recent report by EDC’s 

STELAR Center (Malyn-Smith et al., 2017) identified 

computational thinking as one of the essential skills needed 

by future workers for success in work at the Human-

Technology Frontier. As our society works to understand 

and identify strategies to overcome these complex and 

interrelated challenges, important questions include: What 

can we do to prepare today’s students to succeed in work at 

the Human-Technology Frontier? and What steps can we 

take to make this happen? If we are to believe that the 

Human-Technology Frontier is upon us, we need to 

reconsider how computational thinking is taught in order to 

advantage our students, not only in developing CT skills, but 

also in developing the CT practices used in STEM 

workplaces (EDC, 2011). 

2. BACKGROUND 
Since noted computer scientist Jeannette Wing (2006) 

proposed CT as a new “core skill” various groups have tried 

to define CT for education and training purposes (e.g. 

Grover & Pea, 2013, 2018). CT (focusing on problem-

solving, algorithms, data representation, modeling and 

simulation and connections to other fields) is a prominent 

strand of the K-12 Standards for Computer Science 

developed by the Computer Science Teachers Association 

(CSTA, 2011). Individual states (including Massachusetts 

and New Jersey, USA) have instituted computer science 

(CS) and digital literacy standards that use the term CT. Next 

Generation Science Standards (NGSS Lead States, 2013) 

include computational thinking in one of their eight 

scientific practice standards. National Science Foundation 

(NSF) funded projects are conducting research on several 

different approaches to CT.  Data practices, modeling and 

simulation practices, computational problem solving 

practices and systems thinking practices are proposed by 

Weintrop et al. (2016). Lee et al. (2011) propose that youth 

develop CT skills as they use, modify and create with digital 

tools and technologies. While these initiatives signal a broad 

based, grassroots interest in computational thinking, their 

simultaneous development and independent implementation 

leaves us without consensus on a precise definition of CT. 

(Barr & Stephenson, 2011; Voogt, Fisser, Good, Mishra, & 

Yadav, 2015; Weintrop et al., 2016). Most agree, however, 

that Computational Thinking is formulating problems and 

their solutions in a way that a machine (computer) can be 

used to represent the problem and carry out its solution. 

What has emerged from these varied research and practice 

efforts aimed at CT is a debate over how CT is best taught 

and learned. Many computer science educators believe that 

CT is best taught through programming where students’ 

development of CT can be ensured and uniquely 

observed.  Others believe that to best prepare today’s youth 

for tomorrow’s world, CT should be taught/learned in the 

service of disciplines. While many of the efforts described 

above define CT by dissecting it into its component parts, 

little has focused on what results from integrating CT and 

disciplinary learning. To guide teaching and learning of CT 

within the disciplines, a new kind of computational thinking 

framework was needed – one which captured and clarified 

what students were able to do using CT – and unable to do 

without CT. 
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3. DEVELOPING A FRAMEWORK  
A group consisting of principal investigators, researchers, 

and educators from National Science Foundation funded 

ITEST (Innovative Technology Experiences for Students 

and Teachers) and STEM+C (STEM+Computing) projects 

convened in August and November 2017 to explore the 

development of an Interdisciplinary Framework for 

Integrating CT in K-12 Education. Their goal was to draft a 

framework defining computational thinking from a 

disciplinary perspective. The 54 workshop participants 

provided a good balance of researchers and practitioners, 

who represented grade spans Kindergarten-2nd grade, 3rd-5th 

grade, 6th-8th grade, and 9th-12th grade, as well as disciplines 

including science, mathematics, engineering, social science, 

computer science and the humanities.  In total there were 31 

researchers, 18 teachers / practitioners, 3 participant 

observers, and 2 staff members. (13 of the participants were 

from colleges/universities, 15 from schools, 15 from non-

profits, 1 from business, 3 from foundations including the 

NSF). The primary goals were to develop a framework for 

computational thinking from a disciplinary perspective that 

built on the work of the foremost researchers and 

practitioners focused on helping youth develop CT skills. 

Progress towards the goals was guided by some of the 

foremost CT thought leaders in the U.S. including Irene Lee 

of Massachusetts Institute of Technology, Shuchi Grover, 

Fred Martin of University of Massachusetts Lowell and 

CSTA, and Michael Evans of North Carolina State 

University. 

As a first step, participants were asked to submit examples 

of their work to share with other participants prior to the 

workshops. Educators/practitioners shared curriculum and 

activities that illustrated CT in action in their 

classrooms. Researchers shared their lessons learned 

through research on various aspects of CT skill development 

and integration. Together the group explored these examples 

and found that a number of common “elements” emerged. 

During the workshops, participants were asked to provide 

additional examples of CT integration by grade level and 

discipline.  These examples were subsequently reviewed and 

discussed within the emerging framework of common 

elements.    

Thought about the goal of developing a framework for CT 

in the service of disciplines crystallized around the larger 

goal of education – that of preparing youth for success for 

living, learning and working after compulsory 

education.  Thus, focusing on building a bridge between the 

CT skills developed in school and the professional practices 

involving CT, particularly those in scientific workplaces 

became paramount. 

A traditional way CT is integrated is shown at the bottom of 

Figure 1 illustrated with the Massachusetts digital learning 

and computer science (DLCS) standards component areas of 

abstraction, algorithms, programming and software 

development, data collection and analysis, and modeling and 

simulation. Typically, individual CT components are taught 

then linked in pairs and clusters leading up to potentially 

more powerful CT activities at with older age groups. 

 

 

Figure 1. Bridging between traditional teaching of CT and 

CT as used in CT integrated fields. 

 

Stronger connections between these CT components and the 

powerful practices used by professionals in CT-integrated 

scientific fields (e.g. computational biology, bioinformatics, 

cheminformatics, computational economics and others) 

were sought. The aim in making these connections was to 

ensure that the CT integrated in K-12 concept areas provided 

a strong foundation for the computational thinking used by 

practicing scientists and would bridge the skills transition 

from school to work.   

4. CT from a Disciplinary Perspective – 

examples from STEM workplaces 
To further explore the elements that might form a framework 

for CT from a disciplinary perspective, examples of CT 

commonly used by practicing scientists specifically, 

examples of what can be accomplished using CT that would 

be difficult, if not impossible, without CT were gathered. 

From these examples of CT used by practicing scientists in 

CT integrated fields, the elements emerged and were tested 

as organizers for other examples of CT.  The initial 

examples considered follow. 

4.1. Ensemble modeling 

Scientist use multiple models are used to predict the 

behavior of complex systems. For example, weather 

forecasting now uses ensembles of models to understand 

weather patterns (Gneiting & Raftery, 2005; Krishnamurthy 

et al., 2000).  Each model in an ensemble simulates the 

global weather system taking different sets of parameters or 

initial conditions into account. Instead of making a single 

forecast of the most likely weather, a set (or ensemble) of 

forecasts is produced. This set of forecasts aims to give an 

indication of the range of possible future states of the 

atmosphere.  

4.2. Computational chemistry 

Scientists innovate with computational representations - For 

example, the SMILES (simplified molecular-input line-

entry system) notation is a representation for describing the 

structure of chemical compounds using short ASCII strings 

(O’Boyle, 2012). This revolutionized computational 

chemistry and drug design by enabling computers to read 

and operate on chemical sequences (including searching and 

database indexing). 

4.3. Bioinformatics 

CT is used in bio-informatics workplaces. In Next 

Generation Sequencing Data Analysis, dozens of whole 

genomes can be sequenced in rather short time, producing 

huge amounts of data (McKenna et al., 2010; DePristo, et 
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al., 2011). Complex bioinformatics analyses are required to 

turn these data into scientific findings. To run these analyses 

quickly, automated workflows on high performance 

computers are state of the art. Scientists design processes to 

achieve high throughput processing of genomic data. 

4.4. Environmental science 

Environmental scientists use crowd-sourced data in water 

management (Fienen & Lowry, 2012; Stepenuck & Green, 

2015; McKinley et al., 2015). When considering water 

management strategies for a region, data for various 

communities with different water usage and needs (for 

example, for growing different crops or industrial uses) is 

necessary to understand the larger picture of water usage and 

needs, as well as the local variations. 

4.5. Machine learning  

To a larger and larger extent, scientists are using machine 

learning to make predictions.  In supervised machine 

learning, scientists build models by running algorithms on 

“training sets” of inputs matched with correct responses 

(Srivastava et al., 2014; Lecun, Bengio, & Hinton, 2015). 

These models can then be used to offer predictions (or 

responses) when given new inputs. Changes in the training 

set data can have implications on the machine learning 

model built and can introduce biases if the training data is 

not representative of the target. 

5. The Elements of CT integration from a 

Disciplinary Perspective   
The examples from advisors and researchers along with 

lessons and activities provided by educators were examined. 

Evidence was found that K-12 subject area teachers were 

integrating CT in ways that were consistent with its use in 

CT-integrated fields. The following five Elements of CT 

Integration from a Disciplinary Perspective that emerged 

from the reviews and discussions were:   

1. Understand (complex) systems. 

2. Innovate with computational representations. 

3. Design solutions that leverage computational 

power/resources. 

4. Engage in collective sense making around data.  

5. Understand potential consequences of actions. 

5.1. Understand complex systems  

Modeling how interactions of many individuals or 

components in a system lead to aggregate level emergent 

patterns is difficult to do without CT. Complex systems in 

particular are not amenable to traditional mathematical 

analysis. Simulating a system’s change over time and real-

time feedback in the form of simulations help scientists 

visualize complex systems dynamics. These systems are 

often hard to predict due to having a multitude of interrelated 

factors and levels. In K-12 education, computer modeling 

and simulation of these systems offers a way to see how the 

systems behave under different circumstances, with 

different inputs. 

5.2. Innovating with computational representations 

The design and development of innovations is made possible 

through CT. New ideas, conceptualizations, representations, 

and processes can be thought of and developed as 

computations. For example, thinking of the brain as a 

network and creating neural networks as artificial brains has 

led to advances in artificial intelligence and cognitive 

science.  In K-12, students can be introduced to 

computational representations by learning about how colors 

are represented on computers as RGB values.  

5.3. Design solutions that leverage computational power 

and resources  

Scientists working with large data sets or on computationally 

intensive calculations design solutions that leverage the 

efficient use of resources and computational power to 

optimize their time. In some cases, distal collaborators can 

pool and share computational resources and in other cases 

co-located collaborators can access distributed resources to 

achieve their goal. Some speedups are achieved by 

decomposing datasets and/or processes to run in parallel. In 

K-12 settings, educators can challenge students to think 

about how they would solve a problem differently if the 

input set was of large scale. For example, rather than 

developing processes to assemble 10 finished copies of an 

item, how would students go about assembling 10,000 

copies? 

5.4. Engage in collective sense making around data  

Data sets can be amassed through crowd-sourcing or 

collection by multiple individuals or sensors. These data can 

be analyzed to uncover patterns. Visualization of 

multidimensional data enables students to see patterns that 

might not otherwise be apparent. When possible in the K-12 

education setting, teachers can ask small groups of students 

to run simulations on a subset of the inputs, then share their 

output data and analyses. Gathering and analyzing the 

combined data illustrates how each part of the data 

contributes to the understanding of the whole. 

5.5. Understand potential consequences of actions  

Scientists envision the future through simulation and use 

machine learning to make predictions. Using parameter 

sweeping, the space of all possible combinations of inputs 

can be tested to see the variety and probability of outcomes. 

In K-12, students can learn how cause and effect 

relationships can be used to predict outcome. Students can 

also begin to understand the space of inputs created by 

parameterizing models. 

Notably, these elements of CT integration go beyond the 

mechanics of learning to program a computer.  They form a 

bridge between CT as it has traditionally integrated in K-12 

classrooms (through the introduction of computer 

programming activities) and professional practices.  
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Figure 2. CT integration elements as a bridge between 

traditional CT integration in K-12 education and CT as 

powerful practices used in CT integrated fields. 

Figure 2 illustrates how the thinking progressed from the 

idea of direct teaching of CT skills through programming - 

to a realization that to help students develop CT skills 

through STEM disciplinary learning, their education needs 

to include a stronger focus on computational tools, 

techniques, and processes used in the CT integrated fields. 

6. CT from a Disciplinary Perspective – 

examples from K-12 classroom teachers 
Through the examination of  lessons provided by K-12 

educators, it was determined that a subset of the disciplinary 

teachers were already integrating CT within K-12 that 

aligned with the elements presented above.  Several lessons 

and activities teachers provided from their curricula 

illustrate how these elements can be introduced in K-12 to 

help students develop CT skills aligned with professional 

practices. 

6.1. Middle school science 

In middle school ecosystems lessons (Lee, 2011; Project 

GUTS, 2014) using the StarLogo Nova modeling and 

simulation environment, middle school students in science 

classrooms used, modified and created computer models and 

ran simulation to understand complex systems; multiple 

models were produced and compared; students engaged in 

collective sense making around data (by crowdsourcing data 

generated from multiple runs of each of the models); and 

students learned about potential consequences of actions 

(such as the impact of removing a top predator). 

6.2. Elementary school mathematics  

In a 5th grade mathematics classroom, students were asked 

to generate a language to describe a minimal set of actions 

to be performed by robots tasked to build a tower. Within 

this activity students were innovating with computational 

representations, and designing solutions that leverage how 

computers process data (in this case, instructions).  

6.3. High school engineering  

In a high school engineering classroom, a teacher used a 

multi-step physical construction task to illustrate domain vs. 

task decomposition as method of parallel processing in high 

performance computing. Students designed processes to 

make many copies of a Lego figure that leveraged 

“processing” resources (other students) then optimized the 

design based on collective sense making from data on time 

to complete the task. 

6.4. Middle school mathematics 

In a middle school mathematics classroom, students using 

the iSENSE data-sharing platform were able to collect and 

add locally generated data to a large student-generated data 

set. They could then analyze their data and compare it to data 

provided from other classrooms (Willis et al., 2015).  

6.5. Across subject areas 

There is a large window of opportunity for K-12 students to 

learn about consequences of actions, in areas ranging from 

cause and effect in programming to decision-making and 

prediction in machine learning. 

7. CHALLENGES 
While the path towards CT integration from a disciplinary 

perspective is growing clearer, many challenges remain. 

First, we acknowledge that the majority of K-12 teachers are 

still struggling with the integration of CT in terms of 

teaching the basics of computer programming.  Introducing 

the elements of CT integration can be viewed as a conflicting 

definition instead of a further elaboration on a trajectory of 

CT from K-12 to professional practice.  

Another challenge is the rate at which fields are innovating 

with CT. The examples of CT integrated fields presented in 

this paper are only a few of the many fields that have been 

greatly impacted by CT.  Many additional fields are 

incorporating computational tools, techniques, and 

practices. Across fields, innovations and discoveries made 

possible by the integration of computational tools, 

techniques, and practices are increasing. 

The rapid rise of machine learning raises yet another 

challenge. Across disciplines, the need for analysis of 

computational systems, especially those used to make 

predictions that greatly impact human life, is paramount. 

The inclusion of the CT integration element “Understanding 

potential consequences of actions” addresses this important 

need.  

8. CONCLUSION 
The authors believe that learning CT needs to extend beyond 

learning to program. It must include engagement in 

computational practices used in the sciences that harness the 

power of computers to enhance scientific discovery. The CT 

Integration Elements presented here  provide a framework 

for foundational learning of CT within disciplines beginning 

in elementary school and extending through high school and 

beyond.  Examples provided by K-12 teachers shed light on 

ways K-12 educators have integrated powerful practices 

from professional CT integrated fields. It is hoped that the 

framework can aid teachers in the development of CT 

lessons, and ensure that the CT that teachers promote has 

links to the CT used in scientific workplaces.  Still, this 

Framework is a work-in-progress. It is hoped that it will 

evolve as researchers continue to examine—and K-12 

educators increasingly engage in—CT integration in the 

classroom. 
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