
An Examination of Metrics that Describe User Models 
 Eric G. Van Inwegen Yan Wang Seth Adjei Neil Heffernan 

100 Institute Rd 
Worcester, MA, 01609-2280 

+1-508-831-5569 

{egvaninwegen, ywang14, saadjei, nth} @wpi.edu 
 

ABSTRACT 
We hypothesize that there are two basic ways that a user model 

can perform better than another: 1.) having test data averages that 

match the prediction values1 (we call this the coherence of the 

model) and 2.) having fewer instances near the mean prediction 

(we call this the differentiation of the model).  There are several 

common metrics used to determine the goodness of user models, 

which include: AUC, RMSE, and R-squared.  These metrics 

conflate coherence and differentiation, which can sometimes lead 

to confusion, especially if metrics don’t agree.  By using synthetic 

and real data, we demonstrate how six different metrics respond to 

changes in coherence and differentiation.  We believe that user 

model analyses will be improved if authors report the coherence 

and differentiation, as well as to include AUC/A’, RMSE and R2.  

Lastly, we share a simplified spreadsheet that enables readers to 

examine these effects on their own datasets and models. 

1. INTRODUCTION 
One of the goals of many in the online educational community is 

to more accurately predict whether a student will get the next 

question correct.  If an algorithm can accurately predict that a 

student will get the next problem correct, an Intelligent Tutoring 

System could prevent a student from doing more work than is 

necessary, or continue giving students work until they have 

mastered a topic.  In order to predict student responses, algorithms 

such as Knowledge Tracing [2], Performance Factors Analysis 

[11], and tabling methods [17] etc. have been developed.  (See [3] 

for a thorough review of various user models.)  Looking at only 

papers presented at EDM 2014, we find xx new models or 

modifications proposed [14].  When new models are presented, 

they are often compared to the results of old models.  Common 

metrics used to determine when a model is better than another 

include AUC/A’, RMSE, MAE, and R-squared.  There has been 

some work done (e.g. [1]) looking into what sort of range of 

values we should expect from various metrics (as well as how 

well can the models do to rediscover known parameters).    

An ideal user model would perfectly predict student responses.  

Current models predict the probability that a student-problem-

instance (hereafter “instance”) will be correct.  Models such as 

Knowledge-Tracing (“KT”), Performance Factors Analysis 

(“PFA”), and their derivatives create a theoretically continuous 

range of predictions from 0.00 to 1.00.  Tabling models (eg. [17]) 

may predict a finite range of numbers, but many have been 

modified with a regression and thus create a continuous (or near-

continuous) range of values.  However, even the “continuous” 

models can only create a maximum of number of predictions (one 

per instance).  This means that even continuous models have only 

a finite number of predictions, often with multiple instances 

sharing the same prediction value. 

                                                
1 E.g. If a model identifies a group of 100 student-problem-

instances (based on the model’s parameters) and gives that group 

a prediction value of 0.75, the test data average matches the 

prediction if 75 instances are correct. 

There are two basic properties of a model that will make it more 

accurate: 1.) How well a prediction matches the aggregate test-

data for that value, and 2.) How well the model (by incorporating 

more / better features) can make predictions away from the mean 

and closer to 0 or 1.  We refer to these two concepts as coherence 

and differentiation, respectively. 

If we look at the most naive method to predict correctness on the 

next problem, we can imagine that it would be to either predict 

majority class (1, if more than 1/2 of students are right throughout 

the training data, 0 otherwise) or to predict the average 

correctness value from the training data2.  The ideal goal would be 

to perfectly predict ones and zeros; this would give two prediction 

values.  For example, if we examined a data set and determined 

that 75% of the students get the next question correct, then the 

naive mean model would predict 0.75 for all instances, while the 

absolute ideal model would (correctly) predict 0.00 for 1/4 of the 

instances and 1.00 for the other 3/4.   

The state of knowledge modeling is clearly somewhere in the 

middle.  E.g. if a dataset has an average of 0.75, and a model 

predicts 0.80 for a particular instance, that model “thinks” that 

that student at that time on that problem is more likely to be right 

than the average. In order to better understand the significance of 

the predictions that models make, we find that we need to start 

examining two (currently unreported) properties of predictions. 

1.1 “Coherence” 
Given a large enough data-set, we argue that an accurate model’s 

predictions should match the test data average for a given group 

of instances.  For example, if a model were to identify a group of 

instances and give that group a predicted value of 0.25, we argue 

that the model is accurate if exactly one out of every four students 

(on average) gets the correct answer.  If the model predicts 0.25, 

but only one out of every ten gets it right, the model’s “scores” by 

most metrics will be improved, however, it is not as accurate as a 

similar model that groups that same instances together, but 

predicts 0.10.   

1.2 “Differentiation” 
A naive model of student knowledge might just use the average 

score from a training dataset and make a prediction of that 

probability for all instances in the test data.  Arguably, more 

complicated user models seek to find reasons not to do this.  The 

more features that a model can incorporate to move predictions 

away from the mean value, the better a model is at claiming that 

this instance of student interaction is likely to be right while that 

instance is likely to be wrong.  By manipulating features, models 

(hopefully) learn how to make reliable predictions that are 

different from the mean.  We use the term “differentiation” in 

much the same way as “distribution”.  We do so to avoid a 

possible confusion with the idea of the distribution of the training 

                                                
2 E.g. A model that predicts 1.00 when the training data average is 

0.75 will score an RMSE of 0.5, if the test data has the same 

average. Using 0.75 as the prediction results in an RMSE of 0.43. 



data.  It may be helpful to the reader to think of “differentiation” 

as the distribution of the prediction values. 

1.3 Common Metrics Used as Evaluators 
In the educational data mining community, models are ranked 

against each other by using a range of metrics.  Five common 

ones are AUC, A’, R2, RMSE, and MAE; we make the case to 

replace R2 with Efron’s R2.  We are not the first to suggest Efron’s 

R2; e.g. [9].  Nor are we the first to examine how metric scores 

can be misleading [18].  Some work has been done to identify the 

“best” metric [4]; we think (and hope to show) that any one metric 

can give insufficient information to “score” models. 

We hope to show how these metrics may be inconsistent.  All six 

metrics above involve a summation in their calculations.  This 

summation (across the predictions and test data) conflates 

coherence and differentiation; this conflation can make it difficult 

to compare models if one is better at coherence, and the other is 

better at differentiation.  In this paper, we seek to illustrate how 

these metrics respond to changes in coherence and differentiation 

by analyzing the results of synthetic and real data and models.   

1.4 Essential Questions 
One of the goals of this analysis is to demonstrate the need to 

have a more in-depth analysis of user models and look “under the 

hood” at why and where they do, or do not, produce accurate 

predictions.  To improve the user models, we should be looking at 

coherence and differentiation as separate properties of models.  

Doing so may allow us to find areas where one model has 

weaknesses that can be improved upon; it may also be possible to 

selectively ensemble. 
1.) How do commonly used metrics compare when model-test 

data interactions vary along only single elements at a time? E.g. 

how does modifying models’ differentiation ability, while keeping 

coherences identical (and vice versa) affect metric scores? 

2.) When do metrics fail to agree? 

3.) Is there a more useful metric or combination of metrics that 

lets the user modelling community identify the particular strengths 

and weaknesses of models? 

2. BACKGROUND 
The sub-sections that follow are designed to take novice readers 

through the metric calculations.  The more mathematically-fluent 

may wish to skip to the methods and results. 

2.1 Area Under the Curve and A-Prime 
The metric commonly referred to as AUC refers to the area under 

the receiver operator characteristic (ROC) curve; this metric has 

been frequently used and described in a variety of articles [6, 7, 

10, 12, to name a few].  The ROC curve is often used in medical 

studies to differentiate tests that are useful for ruling in vs. tests 

that are useful for ruling out.  Tests that are useful for ruling in 

will have a low false positive rate (FPR) (i.e. few of the times that 

the test states that a person has a condition will actually be 

wrong).  Tests that are useful for ruling out will have a low false 

negative rate (FNR) (i.e. few of the times that the test “clears” a 

patient will be wrong).  The ideal test would have both a low FPR 

and FNR; this test does not always exist.  The ROC curve is made 

up of a plot of true positive rates (TPR) to false positive rates.  An 

AUC of 0.500 means that the tests (or model) have the predictive 

power of a coin toss; an AUC of 1.000 means that the tests (or 

model) are accurate 100% of the time. 

When used to measure user models, the ROC curve values of TPR 

are found by finding the fraction of positive values (correct 

scores) are found above any given model prediction; the highest 

prediction value always score a TPR = 0.  The FPR is found as 1-

True Negative Rate (TNR).  TNR is the fraction of incorrect 

scores below a given value; the highest prediction value has a 

TNR = 1; therefore the highest prediction value has an FPR of 0.  

AUC is the area under this curve (found by finding the trapezoidal 

area under two consecutive points).  A’ is determined by a 

different method; it can be thought of as the probability of a 

randomly selected negative result being ranked lower than a 

randomly selected positive result. [7]  With ideal methods of 

calculation, AUC and A’ should have the same value. 

What AUC and A’ fail to measure is the coherence of the model 

to test data.  AUC and A’ measure how well a model does at 

sorting test data, with all of the negatives (i.e. 0’s in EDM) ranked 

below the positives (1’s in EDM).  The following two models 

would score a 1.00 (i.e. “perfect”) in A’ / AUC, as well as in R2. 

In terms of our language, both models have been able to perfectly 

differentiate the instances; whatever features these models use to 

separate student responses, those features have correctly separated 

the students who got it right from the students who got it wrong.  

On the other hand, the algorithms that the models have used to 

predict the chances of success are drastically different.  The 

coherence of the model 1 to the test data is very good, while 

model 2’s coherence is almost entirely wrong. 

2.2 R
2
 vs. Efron’s R

2
 

R2 can be thought of as a way to capture how much of the 

variation of a sample is contained within the explanation.  

Calculated as the square of Pearson’s r, it can only have values 

from 0 (no fit between explanation and data) and 1 (perfect 

match).  (E.g. see page p187 of [15].)  Efron [5] modifies R2 to 

compare the error of a model to that of a naive model (predicting 

the mean of the data).  The power of Efron’s R2 is that models that 

are well ordered3, but have low coherence between the predictions 

and the actual values (e.g. Model 2 in Table 1) will have lower 

scores with Efron’s R2; traditional R2 only relies on the ordering 

ability.  The use of Efron’s R2 as a metric has been done in user 

modeling.  (E.g. see [9].)  Although its use is not widespread, we 

think that the demonstrations that follow will show that it 

differentiates models better than traditional R2.  For example, in 

the models of Table 1, the R2 for both is 1.00, while Efron’s R2 is 

0.9996 and -0.9210 for Models 1 and 2, respectively.  A negative 

score indicates that the model is has more error than simply 

predicting the mean value. 

3. METHODS 
In order to visualize the impact of differentiation and coherence 

on the various metrics, we generate not synthetic data, but rather 

synthetic model outputs.  That is to say that we are not concerned 

                                                
3 By “well ordered”, we mean that negative values (incorrect 

student responses) are ranked below positive values (correct 

student responses).  AUC and A’ predominantly score models’ 

abilities to rank positives and negatives.  [12]  

Table 1: Simple demonstration model 

Model 1 Model 2 
Prediction Correct Prediction Correct 
0.01 0 0.98 0 
0.01 0 0.98 0 
0.99 1 0.99 1 
0.99 1 0.99 1 



with how a given model creates its predictions, we are only 

exploring a variety of models’ predictions and test-data averages 

to examine the impact on the scoring metrics.  In order to make 

the calculations (somewhat) easily replicable, we examine 

simplistic models that make only 11 different predictions. 

To compare model outputs, a spreadsheet was created that allows 

the user to input prediction value, test group average, and number 

of instances within that group, for up to eleven groups4.  The 

spreadsheet then calculates values for AUC, A’, R2, Efron’s R2, 

RMSE, and MAE.  The benefit of doing all of this in a 

spreadsheet is that the user can see how the calculations are done.  

The benefit of using tabled data, as opposed to individual data 

lines, is that it saves space and is easier for the researcher to 

change to compare the effects of coherence and differentiation.  A 

publicly shared copy of the spreadsheet can be found at: 

http://tinyurl.com/kznthk7. 

To test the sensitivities of the metrics to differentiation and 

coherence, a baseline model-test data interaction must be defined.  

Our simplest incarnation is a model with 11 prediction values 

(0.00, 0.10... 0.90, 1.00), equal numbers of instances in each 

prediction bin (100), and a perfect coherence.  This model-test 

interaction is called the “Ideal-Flat”.  In most of our synthetic 

comparisons, the Ideal-Flat is present to give us a way to compare 

one trend to another.  The “Flat-Ideal” is characterized in Table 2. 

Table 2: Characteristics of the “Ideal-Flat” model-test data 

interaction.  The colors are used consistently to refer to 

prediction values, test-data averages, and numbers of instances. 

Prediction Values Test Data Averages Numbers of Instances 
0.00 0.00 100 
0.10 0.10 100 
0.20 0.20 100 
0.30 0.30 100 
0.40 0.40 100 
0.50 0.50 100 
0.60 0.60 100 
0.70 0.70 100 
0.80 0.80 100 
0.90 0.90 100 
1.00 1.00 100 
AUC: 0.8636 A’: 0.8636 RMSE: 0.3873 
R2: 0.4000 Ef-R2: 0.4000 MAE: 0.3000 

3.1 Impact of Differentiation 
To test how the metrics change based on differentiation, a few 

basic patterns are explored.   

1.) The basic impact of concavity (using linearly changing 

differentiations that are either maximum or minimum at 0.50) 

2.) The effect of changing concavity on a skewed differentiation 

that more resembles real data. 

3.) The effect of the average prediction value on the metrics. 

4.) The effect of a differentiation with a large number of 

predictions at only one extreme. 

                                                
4
 This should be considered a first demonstration of principle.  

We are not suggesting that models be limited to 11 predictions 

3.2 Impact of Coherence 
Although there are a potentially infinite number of ways that a 

model and the aggregate test data can lack coherence, we only test 

two.  We test the effects of:  
1.) Maintaining the prediction values, but symmetrically changing 

the test group averages 

2.) Maintaining the differentiation, but symmetrically changing 

the prediction values. 

4. RESULTS AND DISCUSSION 

4.1 Impact of Differentiation 
We should point out that, in order to make 1 a “perfect” score for 

all metrics, we are using 1-RMSE and 1-MAE.  (Ordinarily, a 

score of 0 is “perfect” for error analysis; however, to show how 

the metric scores change, it is useful to have all scores “point” in 

the same direction.)  We use this convention in all of our metric 

plots.  In the metric plots, the horizontal axes represent the 

different models’ outputs in each comparison. 

4.1.1 Basic Concavity Effects of Differentiation 
The first test is to determine how the concavity of the 

Differentiation impacts the scores of the metrics.  Figure 1 is a 

plot of the six metrics as a differentiation changes from an 

exceptionally steep “V” (10,100 at 0.00 and 1.00 and 100 at 0.50, 

changing linearly between) to flat to increasingly steep “A” (100 

at 0.00 and 1.00 and 10,100 at 0.50).  The maximum values of the 

“V’s” and “A’s” are (10,100, 5,100, 2,600, 1,100, 600, 350). 

 
Figure 1: AUC, A’, R2, Efron’s R2, (1-RMSE), and (1-MAE) for 

13 synthetic models that differ only in the patterns of 

differentiations.  The model on the far left has 10,100 instances 

for prediction values 0.00 and 1.00, 100 instances at 0.50, and 

changes linearly between.  The model on the far right has the 

reverse trend (10,100 at 0.50 and 100 at 0.00 and 1.00).  All 

models in this comparison have test data averages that match the 

prediction values. 

 
From Figure 1, we can see that all six metrics are most responsive 

nearest the Flat Ideal; the largest change in metric scores occurs 

nearest to the change in concavity of the differentiation.  One way 

to interpret this is that small gains in these metrics will be made 

until a given model can start to truly differentiate; i.e. have fewer 

predictions near the mean and more near 0.00 and 1.00. 

4.1.2 Changing Concavity on only part of the 

Differentiation 
Examining a plot of the differentiation of Knowledge Tracing, 

Performance Factors Analysis, and a new model being presented 

elsewhere by three of this paper’s authors, we have found that all 

three have a differentiation with few instances below 0.50, a peak 

http://tinyurl.com/kznthk7


between 0.70 and 0.80, and then a decrease down to 1.00.  Table 3 

shows the eight differentiation patterns used to generate the values 

plotted in Figure 2.  For all patterns in this comparison, the test 

averages match the prediction values.  Also controlled are the 

total number of predictions (10,000) and the average prediction 

(and test average) value (0.7280). 

4.1.3 Effect of Peak Location on Metrics 
If models are seen as an attempt to differentiate away from the 

training data mean, it would be a useful comparison to see how 

the metrics change for the same differentiation ability but centered 

on a different value.  If we take the “_A” model from Table 2 and 

shift the peak, we can get an idea of how the average value of the 

training data (and thus model’s predictions) affect the metrics. 

The implication of this trend is that the average prediction value 

(which tends to follow the average training data value) impacts 

the score across the six metrics.  Any data set that has an average 

close to 0.500 will naturally score poorly across the metrics. 

4.1.4 Effect of a Large Number of Extreme 

Predictions 
So far, there has been agreement in all six metrics.  The following 

demonstration shows that error-based metrics and ordering 

metrics do not always agree.  Figure 4 demonstrates the effect of a 

single-sided skew on the six metrics.  The leftmost differentiation 

pattern is the “Flat-Ideal”; the rightmost is flat from 0.00 to 0.50, 

but then increases linearly to 10,100 at a prediction of 1.00.  (The 

interim points follow the same pattern as the “V’s” in Figure 1.)  

Another way to visualize “_/” is as a (goalie’s) hockey-stick. 

For the first time in this series of demonstrations, we have a 

disagreement between some of the metrics.  The error-based 

metrics are improving, while the ordering & variability metrics 

are worsening (after a slight improvement).  This can be explained 

by observing that the error metrics will have smaller average 

errors as there are more predictions near 1.00, while the ordering 

metrics will start to have more negatives above the mean than 

does the Flat Ideal. 

4.2 Impact of Coherence 
The next comparisons will explore the effect of coherence (or, 

more properly, a loss of coherence) on metric scores.  When there 

is a loss of coherence is when Efron’s R2 gives a more meaningful 

measure than standard R2. 

4.2.1 Five Models that achieve different test group 

averages 
If the loss of coherence follows a symmetrical pattern, the metrics 

have improved score if the coherence serves to increase the 

ordering power.  Likewise, when the mis-coherence serves to 

diminish the differentiation, the models and metrics all fare worse.  

In the next example, five models are compared; two where the 

Table 3: Differentiation patterns used in Figure 2   Table 4: Differentiation patterns used in Figure 3 

P test “_A”   “_=”   “_M”   P test “_/|” “_A”     “A_” “|\_” 

0.00 0.00 80 80 80 80 80 80 80   0.0 0.0 80 80 80 80 80 80 400 1920 

0.10 0.10 80 80 80 80 80 80 80   0.1 0.1 80 80 80 80 80 400 1600 2800 

0.20 0.20 80 80 80 80 80 80 80   0.2 0.2 80 80 80 80 400 1600 2800 2800 

0.30 0.30 80 80 80 80 80 80 80   0.3 0.3 80 80 80 400 1600 2800 2800 1600 

0.40 0.40 80 80 80 80 80 80 80   0.4 0.4 80 80 400 1600 2800 2800 1600 400 

0.50 0.50 400 800 1200 1600 2000 2400 2800   0.5 0.5 80 400 1600 2800 2800 1600 400 80 

0.60 0.60 1600 1600 1600 1600 1600 1600 1600   0.6 0.6 400 1600 2800 2800 1600 400 80 80 

0.70 0.70 2800 2400 2000 1600 1200 800 400   0.7 0.7 1600 2800 2800 1600 400 80 80 80 

0.80 0.80 2800 2400 2000 1600 1200 800 400   0.8 0.8 2800 2800 1600 400 80 80 80 80 

0.90 0.90 1600 1600 1600 1600 1600 1600 1600   0.9 0.9 2800 1600 400 80 80 80 80 80 

1.00 1.00 400 800 1200 1600 2000 2400 2800   1.0 1.0 1920 400 80 80 80 80 80 80 

            avg 0.816 0.728 0.637 0.546 0.454 0.363 0.272 0.184 
   

 

 

 
Figure 2: The effect of changing concavity on only part of a 

differentiation pattern. 

 Figure 3: The effects of shifting a peak of predictions on the six 

metrics. 

 
Figure 4: Demonstrating the effects of skewing predictions. 



model’s predictions are less confident than the test data averages 

(models “A” and “B”), two where the prediction is overconfident 

(models “C” and “D”), and the ideal flat model.  In this 

comparison, all five models make the same 11 predictions (and all 

have 100 instances per prediction).  However, the test data 

averages vary from the predictions.  The models’ predictions and 

test data averages are in Table 4. 

 

4.1.3 Five Models with different prediction values 
In this next exploration, the test-group average will remain at 0, 

0.10... 0.90, 1.00, but the prediction values will vary.  Table 3 

summarizes the changes to the prediction values; Figure 4 display 

the metric scores for the models described in table 3. 

E - p F - p I.F. - p G - p H - p Test n 
0.25 0.15 0.00 0.00 0.00 0.00 100 
0.30 0.22 0.10 0.01 0.01 0.10 100 
0.35 0.29 0.20 0.13 0.02 0.20 100 
0.40 0.36 0.30 0.25 0.17 0.30 100 
0.45 0.43 0.40 0.38 0.33 0.40 100 
0.50 0.50 0.50 0.50 0.50 0.50 100 
0.55 0.57 0.60 0.62 0.66 0.60 100 
0.60 0.64 0.70 0.75 0.83 0.70 100 
0.65 0.71 0.80 0.88 0.98 0.80 100 
0.70 0.78 0.90 0.99 0.99 0.90 100 
0.75 0.85 1.00 1.00 1.00 1.00 100 

Table 6: Models E-H; metric scores are in Figure 6 

 

 
Figure 6: Five models that all achieve the same differentiation 

and test-data averages, but having differing prediction values.  An 

interesting point not easily apparent in the graph is that 1-RMSE 

does not perfectly track R2 for the first three values; there are 

times when RMSE and R2 respond differently as error metrics. 

 
Since the groupings, differentiation patterns and ordering of 

correct and incorrect percentages don’t change, AUC and A’ are 

the same across the five models.  The other four metrics have a 

rather complex relationship with these models.  What should be 

learned from these examples is that these metrics do not always 

agree, because they measure different things.  As a general rule, 

RMSE improves when the test group average is more extreme 

(closer to 0 or 1) than the prediction. 

4.3 Real Data Analyzed for Coherence and 

Differentiation 
4.3.1 Example 1 - Three Models trained on a large 

(~400K) data set 
If we take real data and models and try to analyze it in the same 

manner, we, of course have the problem that there are vastly more 

than 11 prediction values.  However, as an example, we can take 

real data and force it to look like the synthetic data presented 

above. 

In another paper [16], we have submitted a new user model.  The 

mechanics of this new model are outside of the scope of this 

paper.  However, the results of that model can be used as an 

example here.  In that paper, the new model, called “SuperBins” 

(SB), is compared to Knowledge Tracing (KT) and Performance 

Factors Analysis (PFA), and found to be “better”, according to 

RMSE, R2, and AUC.  The analysis of why / where one model is 

better than another is not included in that paper, but perhaps it 

should have been. 

If we “shoehorn” the model-test interaction of SB, KT, and PFA 

into only 11 groups, we will certainly lose precision (and the 

metric scores suffer somewhat), but the analysis is useful.  To do 

so, we average the prediction values (according to their 

frequency) across eleven equal lengths of prediction values of the 

data set; we do the same for the test data averages.  I.e., The 

average prediction value from 0 to 0.0909, as weighted by the 

frequency of each prediction was found to be 0.08 for the 

SuperBins model.  Within that range, there were 5 instances, all 

were wrong.  There were no predictions in that range for KT.  

There were nine for PFA (eight were right), with an average 

prediction value of 0.01.  The first row in Table 7 displays this 

information. 

Table 5: Models A, B, C, and D.  The models all predict 

the same (left red column), but the test data averages do 

not match the predictions (except for the Ideal Flat). 

p - all A - test B - t IF - t C - t D - t n 
0.00 0.00 0.00 0.00 0.15 0.25 100 
0.10 0.01 0.01 0.10 0.22 0.30 100 
0.20 0.02 0.13 0.20 0.29 0.35 100 
0.30 0.17 0.25 0.30 0.36 0.40 100 
0.40 0.33 0.38 0.40 0.43 0.45 100 
0.50 0.50 0.50 0.50 0.50 0.50 100 
0.60 0.67 0.68 0.60 0.57 0.55 100 
0.70 0.83 0.75 0.70 0.64 0.60 100 
0.80 0.98 0.88 0.80 0.71 0.65 100 
0.90 0.99 0.99 0.90 0.78 0.70 100 
1.00 1.00 1.00 1.00 0.85 0.75 100 

Figure 5: Five models that have the same prediction values, but 

different averages for the test data within the prediction groups. 



By looking at just the classic metrics (AUC, R2, RMSE), we 

cannot say why one model scores better than another.  However, 

by looking at a table of the predictions and test data averages 

(which we call a “Coherence-Frequency Table”), we can learn 

more about the model’s coherence and differentiation.   

From 0.60 and up, all three models have very similar coherence; 

that is the predictions closely match the test data averages.  

However, KT has over-predicted in three of the 6 groups below 

0.60.  Since the other two groupings have small numbers of 

instances (n<100), we are reluctant to draw conclusions of 

accuracy in those cases.  PFA appears to be reasonably consistent, 

as long as there are large numbers (n>200) in each group; 

however, one could argue that PFA 

consistently under-predicts in this range.  

Others [13] have previously reported on 

KT over-reporting; however, this 

analysis allows a researcher to examine 

under or over reporting in finer detail. 

Although there is not as large of a 

change in differentiation (e.g. moving 

from a uni-modal distribution to a 

bimodal one), what we can say is that 

PFA has done the worst of the three at 

moving instances away from the training 

mean.  The major reason why SB scores 

so well against the other two has to do 

with its ability to differentiate and bring 

more predictions below 0.50, while 

maintaining coherence.   

The easiest way to measure the 

differentiation of the prediction values 

might be to report the standard deviation 

of prediction values.  In this case, the 

values are: SB: 0.166; KT: 0.147; PFA: 

0.107.  As a way to compare to the 

“ideal”, we could report either the 

standard deviation of the test data 

(0.439), or the standard deviation of the 

training data (0.440). 

4.3.2 Example 2 - Two model variations trained on a 

small (~32K, single skill) dataset. 
Curious to see if the idea of differentiation and coherence can also 

apply to model outputs from smaller analyses, we applied two 

very similar algorithms to a single skill dataset.  Using the PFA-

Decay algorithm introduced in [8], we applied two different decay 

values (0.5 and 0.9) to only one skill.  We selected a dataset that 

we knew (from previous use) would generate near identical 

RMSE values, but different AUC values.  Since our training set 

was relatively small, and the two models are very similar, the 

range of prediction values is much less than 0-1.  Using the same 

Table 7: Example 1: A Coherence-Frequency Table of results from three knowledge models 

trained and tested on the same real dataset (80/20).  Model results have been averaged across 11 

intervals to be comparable to the synthetic model results used elsewhere in this paper.  The 

prediction and test values are the weighted averages of each model within the ranges on the left. 
* KT had no predicted values smaller than 0.15 for this dataset. 

 SB  KT  PFA 

Range pred test n  pred test n  pred test n 

0.0000 - 0.0909 0.08 0.00 5  *    0.01 0.78 9 

0.0910 - 0.1818 0.14 0.13 516  0.16 0.75 4  0.13 0.53 17 

0.1819 - 0.2727 0.22 0.23 892  0.24 0.30 64  0.23 0.46 56 

0.2728 - 0.3636 0.31 0.32 1829  0.33 0.28 704  0.31 0.49 168 

0.3637 - 0.4545 0.41 0.41 3235  0.40 0.36 2565  0.41 0.42 643 

0.4546 - 0.5454 0.50 0.51 4878  0.51 0.48 6978  0.50 0.49 3539 

0.5455 - 0.6363 0.60 0.60 6355  0.60 0.61 8776  0.61 0.59 7376 

0.6364 - 0.7272 0.69 0.69 9772  0.69 0.71 12149  0.70 0.70 25819 

0.7273 - 0.8181 0.79 0.79 25296  0.78 0.78 18518  0.77 0.78 25580 

0.8182 - 0.9090 0.86 0.87 23347  0.87 0.85 23600  0.87 0.87 13811 

0.9091 - 1.0000 0.97 0.97 3074  0.95 0.95 5841  0.97 0.96 2181 

Metrics 
AUC 
0.728 

R2  
0.145 

RMSE 
0.406 

 AUC 
0.710 

R2  
0.115 

RMSE 
0.413 

 AUC 
0.653 

R2 
0.058  

RMSE 
0.426 

 stdev (pred): 0.166  stdev(pred): 0.147  stdev(pred): 0.107 

Table 8: Example 2 Two similar models trained on a small (one skill, ~40K instances) dataset.  The average NPC of the training data 

is 0.7907; the three bins nearest the training average have been underlined. 

 PFA with 0.9 Decay  PFA with 0.5 Decay 

Range Pred Test n-TOT n-HKS n-LKS  Pred Test n-TOT n-HKS n-LKS 

0.088 - 0.167 0.1299 0.1579 19 0 19       

0.168 - 0.245 0.2122 0.4167 24 4 20       

0.246 - 0.324 0.2806 0.3000 40 19 21       

0.325 - 0.403 0.3612 0.4459 74 41 33       

0.404 - 0.481 0.4426 0.5192 104 39 65  0.4437 0.3962 212 64 148 

0.482 - 0.560 0.5223 0.5568 176 52 124  0.5279 0.5759 415 133 282 

0.561 - 0.638 0.5970 0.5811 296 86 210  0.5983 0.6258 310 110 200 

0.639 - 0.717 0.6749 0.6492 573 189 384  0.6864 0.6663 950 410 540 

0.718 - 0.795 0.7593 0.7131 1471 604 867  0.7584 0.7224 508 178 330 

0.796 - 0.874 0.8475 0.8737 2826 1489 1337  0.8333 0.8180 1599 732 867 

0.875 - 0.953 0.9017 0.8702 1333 864 469  0.8827 0.8861 2942 1760 1182 

 AUC: 0.695;       RMSE: 0.393;       R2: 0.089  AUC: 0.694;       RMSE: 0.394;       R2: 0.088 

 stdev(predictions): 0.128  stdev(predictions): 0.124  



methods as in example one, we created a range-averaged 

frequency table to compare coherence and differentiation.  The 

results are Table 8. 

At first glance, one might be inclined to score PFA with 0.9 

Decay higher on differentiation; it has a wider range of scores.  

However, these models are essentially tied across all metrics.  

Even trying to subdivide the number of instances by High 

Knowledge Students and Low Knowledge Students (defined as 

simply above or below the median score of students’ prior 

question correctness averages) doesn’t tell us too much more.  In 

this case, the models result in nearly identical outcomes. 

We wanted to test the idea of whether refitting the models to high 

and low knowledge students gives meaningful differences.  Table 

9 below has the same range values as in Table 8.  In this analysis, 

the students were separated before the models were run; this 

allows us to determine if the models work better for a certain 

subset of the student population. 

Once the dataset has been divided by student knowledge, and the 

two models rerun, what we find is that (in this model-dataset 

interaction), PFA with 0.9 Decay does a better job of prediction 

for high knowledge students than PFA with 0.5 Decay.  The 

reverse, however, is true for low knowledge students.  In 

analyzing the Coherence-Frequency Table for the low knowledge 

students, we might (at first glance) be inclined to state that PFA 

0.9 has done a better job at differentiation because there is a wider 

range of scores.   

4.3.3 Example 3 - Coherence-Frequency Table based 

on prior knowledge scores 
A Coherence-Frequency Table could also be used to test how well 

a given model applies to other features.  For instance, with the two 

models from the previous example (PFA with 0.9 Decay and PFA 

with 0.5 Decay), we can test the model results coherence not 

across prediction ranges, but across prior knowledge ranges.  To 

do so, we used all five folds, and averaged by student before we 

generated the results found in Table 10. 

What we find here is that both models over-predict for the lower 

six groups of student prior knowledge, and under-predict for the 

top five groups of students.  This could give a model designer 

input into how to adjust their model for a future iteration. 

5. CONCLUSION 
Most of the time, the traditional metrics agree with each other and 

tend to give straight-forward meanings when used to compare the 

predictive power of models.  However, there are times when the 

metrics disagree.  Two examples we have shown are: when 

differentiation / ordering is the same, but predictions vary, and 

when a model overwhelmingly predicts at just one extreme.  

There also may be times (e.g. when the training average is near 

0.50) when the differences in scores between two models is very 

minimal and thus model comparison is difficult. 

We conclude that, if we are to accurately compare knowledge 

predicting models to each other, we need to look at new metrics, 

in addition to a mix of old metrics.  We do not believe that we are 

proposing the “ultimate” single metric that will definitively state 

which model is “better”.  We are stating that we believe model 

Table 9: Example 2, cont’d: Coherence-Frequency Table of PFA with two decay values applied to a single skill dataset that has 

been separated by student knowledge.  The prediction ranges are the same as in Table 8. 

PFA 0.9 Decay-HKS PFA 0.5 Decay-HKS PFA 0.9 Decay-LKS PFA 0.5 Decay-LKS 

pred test n pred test n pred test n pred test n 

      0.141 0.167 12    

0.229 0.714 7    0.210 0.250 20    

0.298 0.478 23    0.286 0.200 25    

0.365 0.400 35    0.365 0.469 32 0.399 0.109 46 

0.441 0.424 33    0.445 0.538 65 0.444 0.561 198 
0.527 0.617 47 0.542 0.444 45 0.530 0.557 183 0.519 0.557 273 
0.608 0.575 73 0.597 0.567 90 0.611 0.602 342 0.618 0.566 433 
0.681 0.636 110 0.676 0.635 189 0.687 0.615 602 0.674 0.681 335 
0.758 0.747 281 0.763 0.743 435 0.759 0.762 724 0.762 0.761 566 
0.836 0.804 850 0.843 0.818 533 0.826 0.850 1274 0.844 0.844 1698 

0.905 0.907 1928 0.902 0.896 2095 0.892 0.852 270    
AUC: 
0.694 

 RMSE: 

0.356 

AUC: 

0.685 

 RMSE: 

0.358 
AUC: 

0.673 

 RMSE: 

0.424 

AUC: 

0.681 

 RMSE: 
0.423 

stdev(pred): 0.115 stedev(pred): 0.086 stedev(pred): 0.128 stedev(pred): 0.134 

avg (pred): 0.841 avg (pred): 0.849 avg (pred): 0.737 avg (pred): 0.724 

Table 10: Example 3: Coherence-Frequency Table arranged by 

student prior knowledge score. 

Range (0-1.00) 
avg 

prior 
avg pred  
PFA 0.9 

avg pred  
PFA 0.5 avg npc 

n 

students 
0.0000 - 0.0909 0.0379 0.5299 0.6180 0.4098 5 
0.0910 - 0.1818 0.1296 0.6817 0.7060 0.5602 16 
0.1819 - 0.2727 0.2270 0.7308 0.7370 0.6304 31 
0.2728 - 0.3636 0.3175 0.7649 0.7648 0.7293 90 
0.3637 - 0.4545 0.4183 0.7626 0.7626 0.7563 149 
0.4546 - 0.5454 0.5068 0.7814 0.7803 0.7661 387 
0.5455 - 0.6363 0.5953 0.8011 0.8017 0.8379 850 
0.6364 - 0.7272 0.6839 0.8199 0.8214 0.8800 1587 
0.7273 - 0.8181 0.7721 0.8321 0.8344 0.9056 1761 
0.8182 - 0.9090 0.8553 0.8440 0.8457 0.9336 938 
0.9091 - 1.0000 0.9412 0.8582 0.8631 0.9656 205 



comparison is improved when it contains (AUC or A’), (R2 or 

Efron’s R2), RMSE, and the standard deviation of the predictions.  

A more thorough comparison might also include ROC curve 

analysis and / or a Coherence-Frequency Table analysis in an 

attempt to identify regions of habitual over or under prediction.  

However, we are aware of the limitations of space in papers.  One 

space-saving solution might be to give summary statistics and 

embed a tinyurl with a link to a static webpage with more detailed 

graphical / chart-based analyses. 

5.1 Future Work 
Stepping back, what is our contribution?  The trailing author on 

this paper, Heffernan, has contributed to the community a large 

number of user models, but is honestly confused about “How 

should we in the EDM community evaluate models?” Some 

authors have already recommended we should report multiple 

metrics; we should be skeptical of a result that reports only one 

metric.  One potential solution would be for the EDM community 

to adopt a “best practices guide” (and updates it on a, perhaps, 

annual or biennial basis).   

We are tempted to recommend to the EDM community that the 

methods presented here might be a logical next metric to look at. 

As we show in example 3, grouping instances can be based on 

some other student feature; this sort of analysis could give a 

researcher further insight into trade-offs that have been happening 

behind the scenes.  (E.g., a researcher might find that some groups 

of students are over predicted, while others are under-predicted; 

care, of course, will need to be made to ensure that false 

groupings are not created.)   

We think we have raised more questions than we have answers, 

and encourage our colleagues to help the EDM community come 

up with better ways to evaluate models.   
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