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ABSTRACT 
The well-studied Baker et al., affect detectors on boredom, 
frustration, confusion and engagement concentration with 
ASSISTments dataset were used to predict state tests scores, 
college enrollment, and even whether a student majored in a 
STEM field. In this paper, we present three attempts to improve 
upon current affect detectors. The first attempt analyzed the effect 
of missing skill tags in the dataset to the accuracy of the affect 
detectors. The results show a small improvement after correctly 
tagging the missing skill values. The second attempt added four 
features related to student classes for feature selection. The third 
attempt added two features that described information about 
student common wrong answers for feature selection. Result 
showed that two out of the four detectors were improved by 
adding the new features.  

Categories and Subject Descriptors 
J.1 [Administrative Data Processing] Education; K.3.1 
[Computer Uses in Education] Computer-assisted instruction 
(CAI) 

General Terms 
Measurement, Performance 

Keywords 
Measurement, Affect Detection, Missing Skill, Class Features, 
Common Wrong Answers, Learning Analytics 

1. INTRODUCTION 
Affect detection in educational systems is important in 
understanding student affect and its impacts on learning. Correctly 
detected student affect could potentially help guide interventions 
to improve student engagement, reduce student confusion, 

frustration or boredom. In recent years, sensor free affect 
detection (D’Mello et al. 2008, Baker et al. 2011, Sabourin et al. 
2011) has gained more and more attention. This approach can be 
easily applied to various real-world educational systems for 
students’ affect detection without requirement of sensor systems. 

Currently, the best sensor free affect detectors were built by Baker 
et al. (2011) on the cognitive tutor dataset, which can be used to 
detect student engaged concentration, confusion, frustration and 
boredom solely from students’ log data. The detectors were then 
rebuilt using the ASSISTments’ dataset, and helped various of 
researches, including Hawkins et al.’s work (2013) on interface 
design influences affect. Pardos et al. (2013) investigated how 
affect influenced learning, and used affect conditions to predict 
state tests scores. San Pedro et al. (2013) even used the affect 
detector to analyze how affect influences the eventual decision to 
attend college, including college enrollments and whether a 
student majored in a STEM field. 

The original sensor-free affect detection method has produced 
detectors that are better than chance, but not substantially better. 
However, in the three years since their creation, little has  been 
reported on improvements to the original sensor-free affect 
detectors. In this paper, we made several attempts to improve the 
detectors. The first attempt was correcting the missing skill tags in 
the ASSISTments dataset. We found that the model was based 
upon the ASSISTments data that included almost a quarter of the 
questions not tagged with any skill. We decided to run 
experiments to see if tagging these questions with correct skills 
the detectors could perform better.  

We also tried to improve the detectors by adding in new features. 
Two sets of features were considered. The first set was related to 
information about student classes. Student class is one of the most 
common objects that is studied in the educational field. However, 
when building student models such as models for predicting 
student performance or estimating student affective states, class 
level features are rarely considered. Wang et al. (2013) showed in 
a student model that class level parameters could be useful. In our 
experiments, results showed that class features also helped 
improve two out of the four affect detectors. The second set of 
features was related to whether the student made a common wrong 
answer. Previous research in our lab showed that the group of data 
logs in which all the answers are not common (namely uncommon 
wrong answer group) were more likely to be followed by a wrong 
attempt on the next problem for this particular student and skill. 
We looked at whether or not common wrong answers could also 
help improve affect detectors. 

Details of all the models, including runnable versions in 
RapidMiner can be found online [7]. 
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2. METHODOLOGY 
2.1  Dataset and features 
The data used in the analysis presented here came from the 
ASSISTments system, a freely available web-based tutoring 
system for 4th through 10th grade mathematics. The system gives 
tutorial assistance if a student makes a wrong attempt or asks for 
help. Figure 1. shows an example of a hint, which is one type of 
assistance. A second type of assistance is presented if a student 
clicks on (or types in) an incorrect answer, at which point the 
student is given feedback that they answered incorrectly 
(sometimes, but by no means always, students will get a context-
sensitive message we call a “buggy message”).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our dataset also provides a special type of assistance called 
scaffolding as in Figure 2. Since it’s only a small amount of our 
data, this detail might not be that important. But for completeness 
and for understanding of some of the features, we wanted to 
describe this. For those problems with scaffolding questions, if a 
student gets the original question wrong, the system will give the 
student a series of questions we call “scaffolding” that walk the 
student through the steps of solving the original question. 

The students and features in this study were same as the previous 
studies of sensor free affect detectors on ASSISTments data 
(Ocumpaugh et al. 2014). Students were drawn from middle 
schools in the northeastern United States. The ground truth labels 
of student affect were obtained using quantitative field 
observations (QFOs) in the Baker-Rodrigo Observation Method 
Protocol (BROMP, Ocumpaugh et al. 2012). BROMP coders 
record the affective state of each student in a 20-second field 
observation window, which was later synchronized with student’s 
interactions with the educational system according to the same 
internet time server to distill features for affect detection. Fifty-
eight features, including temporal features, skill-based features, 
features based on the number of errors, the number of correct 
answers and the number of hints requested, were developed using 
the action data during and prior to the twenty seconds prior to 
data entry by the observer. Then mean, min, max and sum 
aggregators were used on these 58 features across the actions 

within the clip to generate a total of 232 features. Examples of 
features can be found in Tables 2 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Classification and evaluation 
The classification and evaluation method was described in detail 
in Baker et al. 2011. Four affect states: boredom, engaging 
concentration, frustration and confusion, were predicted 
separately by applying standard data mining classification 
algorithms within RapidMiner 5 (Mierswa et al., 2006). This 
resulted in four detectors, one for boredom, confusion, engaged 
concentration, and frustration respectively. The data mining 
algorithms selected include linear regression, decision trees, step 
regression, Naïve Bayes, JRip, J48, REPTree, Bayesian logistic 
regression, and K*. Forward selection feature selection was 
conducted for each of the machine learning algorithms using 
cross-validated kappa as the goodness metric.  

Each detector was evaluated using five-fold student-level cross- 
validation to insure accuracy for new students. Students were split 
randomly into five groups. There were five rounds of training and 
testing. During each round a different group of students data 
served as the test set and the data from the remaining four groups 
served as the training set. Cohen’s Kappa (Cohen 1960) and A’ 
(Hanley and McNeil 1982) were used to determine which 
detectors were most effective. A Kappa of 0 indicates that the 
detector performs at chance; a Kappa of 1 indicates that the 
detector performs perfectly; and a Kappa of 0.2 indicates that the 
detector is 20% better than chance. A’ is the probability that the 
algorithm will correctly identify whether a specific affective state 
is present or absent in a specific clip. A model with an A' of 0.5 
performs at chance. 

Figure 1. Hints and buggy message in ASSISTments 
 
. 

 
 

Figure 2. Scaffolding in ASSISTments 
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2.3 Missing skill problem 
One of the biggest problems in “big-data” analysis is the missing 
data problem. In our dataset, we noticed that around 24% of the 
data has missing skill tags. All the logs that had missing skill tags 
were treated as a single skill: “no-skill.” Since skill is one of the 
most important features in the educational dataset, we were 
intrigued to see how much improvement could be achieved if all 
the skills were tagged properly. To do so, we exported all 388 
problems that had no skill tags in our dataset and manually tagged 
them with the correct skills. We then regenerated the 232 features 
using the new dataset and rebuilt all of the four affect detectors. 
The goal is to find out how much improvement, if any, can be 
achieved by generating more accurate skill related features. 

2.4 Class and Common Wrong Answer 
features 
Class features were generated based on the intuition that student 
affect could be influenced by the behavior of the class that they 
belonged to. For example, a student could feel less frustrated 
when he/she was better than most of other students in his/her 
class. We developed four new features that were related to student 
class: 

 pCorrectClass: the percentage of correctness of all previous 
questions answered in this class; 

 pCorrectStudentPercentileRank: the student percentile rank 
of average performance in this class so far for this student; 

 nClassData: number of previous data points in this class; 

 nClassStudent: number of students has been seen in this class 
so far; 

These four features can be separated into two groups: 
pCorrectClass was designed to describe the average performance 
of the class that the student belonged. This could potentially be 
useful for normalizing the effect of student performance on 
student affect. nClassData was designed to evaluate the 
robustness of the feature pCorrectClass. When the number of data 
points in this class were small, we should put less trust in the 
pCorrectClass feature.  

The pCorrectStudentPercentileRank feature was designed to 
describe how good the student did compared to his/her peer 
classmates. nClassStudent and nClassData could be used together 
to indicate how much we could trust the feature  
pCorrectStudentPercentileRank. 

Common wrong answer is a novel feature that has great potential 
in educational models. Intuitively, students who answered a 
common wrong answer could indicate certain misunderstanding 
and/or understanding of the problem. We developed two features  
related to common wrong answers: 

 answerPercentage: the percentage of this particular answer 
among all logs that answered this problem; 

 commonWrongAnswer: a binary feature describes whether or 
not this answer is a common wrong answer; A common 
wrong answer was defined by answers that were given by at 
least 10% of the students that got the question wrong;  

We evaluated the effect of class features and common wrong 
answer features using the same method. First, the four class 

features or the two common wrong answer features were added 
into the original 232 features. Then a unique-id was used to 
generate exactly the same resampling and cross-validation dataset 
to make sure the new detectors’ performance can be directly 
compared with the original detectors. Finally, the same 
classification and evaluation methods were used to build and 
evaluate the new detectors. 

3. EXPERIMENTAL RESULTS 

3.1 Effect of missing skills 
The results of correcting missing skills are shown in Table 1. The 
bold values in Table 1 showed the improved model results. As 
shown in the table, the improvement was small (only improved 
3% of average Kappa). This indicated that the sensor free affect 
detectors could be safely used on datasets with a certain amount 
of missing skill tags, with only a small sacrifice of performance. 
This was good news for educational systems in which missing 
skill tags were inevitable (e.g., systems allowing teachers create 
their own problems without skill tags). 
 

Table 1. Effect of missing skills 

Detector 
Original With corrected skills 

A’ Kappa A’ Kappa 
Engaged 

Concentration 0.731 0.417 0.736 0.419 

Confusion 0.625 0.146 0.627 0.148 

Frustration 0.597 0.151 0.602 0.157 

Boredom 0.662 0.243 0.671 0.264 

Average 0.654 0.239 0.659 0.247 
 
As an example, features automatically selected for the engaged 
concentration detector were listed in Table 2. At the first glance, 
the two sets of features seemed different. However, by closely 
looking at what the features represent, many of them were 
providing similar information. 
 

Table 2. The features in the final detectors after correcting 
missing skills 

Engaged Concentration 

Original With Corrected Skills 

Total first responses attempted 
in the tutor so far. 

The sum of numbers of first 
responses during school hours 
(between 7:00 am and 3:00 pm) 

The number of main problems 
seen in this 20 seconds  

The sum of time spend on this 
problem 

The minimal number of first 
responses during school hours 
(between 7:00 am and 3:00 pm) 

The average correctness in this 
20 seconds 

The average time spent on first 
responses in answering 
scaffolding problems 

The maximum number of first 
responses that were help 
requests 

The average correctness in this 
20 seconds 

The average number of total 
hints  
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The maximum number of 
previous incorrect actions and 
help requests for any skill in the 
clip 

 

3.2 Effect of class and Common Wrong 
Answer features 
After adding four class features, detector performance was 
improved in two out of four detectors. Results are shown in Table 
3. The bold values showed the improved model results. For 
confusion and frustration detectors, the class features were not 
selected into the final models. 
 

Table 3. Effect of class features 

Detector 
Original With Class Features 

A’ Kappa A’ Kappa 
Engaged 

Concentration 0.731 0.417 0.743 0.423 

Confusion 0.625 0.146 0.625 0.146 

Frustration 0.597 0.151 0.597 0.151 

Boredom 0.662 0.243 0.671 0.260 

Average 0.654 0.239 0.659 0.245 
 
Table 4. The features in the final detectors with class features 

Engaged Concentration 

Original With Class Features 

Total first responses attempted 
in the tutor so far 

The percentage of correctness 
of all the questions answered 
in the class so far 

The number of main problems 
seen in this 20 seconds  

Number of data points for 
this class so far 

The minimal number of first 
responses during school hours 
(between 7:00 am and 3:00 pm) 

The number of main problems 
seen in this 20 seconds 

The average time spent on first 
responses in answering 
scaffolding problems 

The average of the number of 
first responses during school 
hours (between 7:00 am and 
3:00 pm) 

The average correctness in this 
20 seconds  

The maximum number of 
previous incorrect actions and 
help requests for any skill in the 
clip 

 

 

Boredom 

Original With Class Features 

The sum of the number of first 
responses during school hours 
(between 7:00 am and 3:00 pm) 

The sum of the number of first 
responses during school hours 
(between 7:00 am and 3:00 
pm) 

Sum of wrong answers in the The number of students has 

past 8 problems been seen in this class so far 

The average of response times 
for any skill in the clip 

The student percentile rank 
of average performance in 
the class so far for this 
student 

The average of the number of 
first responses during school 
hours (between 7:00 am and 
3:00 pm) 

The minimal number of 
multiple choice questions in 
this 20 seconds  

Sum of wrong answers in the 
past 5 problems 

The minimal number of hints 
in this 20 seconds 

 
The minimal number of 
questions that has a help 
request as the first response 

 
For the two improved detectors: engaged concentration and 
boredom, features automatically selected for each of the detectors 
during machine learning are listed in Table 4. 

In the engaged concentration detector with class features, the 
percentage of correctness of the class (pCorrectClass) and the 
number of data points in the class (nClassData) were selected. 
This could indicate that in modeling concentration, class 
performance is more important than student individual 
performance. 

In the boredom detector with class features, the student percentile 
rank of average performance in the class 
(pCorrectStudentPercentileRank) and number of students 
(nClassStudent) were selected. These features replaced the 
performance feature that described how many incorrect answers 
the student answered before as in the original boredom detector, 
while bring in features describing how many help students can get 
from the system, including whether or not the question is multiple 
choice question, and how many hints were asked. The result 
suggests that for boredom detector, student performance can be 
more effectively represented by students’ percentage rank in 
correctness. 

After adding two common wrong answer features, detector 
performance was recalculated. The binary version of common 
wrong answer feature was selected into the engaged concentration 
detector: students who give common wrong answers are more 
likely to be effectively working. The more detailed version of 
common wrong answer features was selected into the boredom 
detector. Certain, but not all, common wrong answers are related 
to guessing, which is a common behavior of bored students. 

For confusion and frustration, the common wrong answer features 
were not selected into the final models.  

This approach achieved 5% improvement on average Kappa of the 
detectors. Result tables can be found online [7] 

4. DISCUSSION AND CONCLUSIONS 
In this paper, we presented three attempts to improve existing 
sensor-free affect detectors with the ASSISTments dataset. The 
first attempt analyzed the effect of missing skill tags in the dataset 
on the accuracy of the affect detectors. Not many researchers pay 
attention to the performance of models in dataset with missing 
values in the learning analytic field. The results showed only a 
small improvement after correctly tagging the missing skill values. 
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This suggests that it should be safe to use the affect detectors with 
a certain amount of missing skills. 

The second attempt added four features that describe information 
about student classes into the feature pool for feature selection. 
Class is one of the common objects that are studied in learning 
analytics analyses. Results showed that class features helped 
improve the concentration and the boredom detectors by 3.5% on 
average Kappa. 

The third attempt added two features that describe information 
about how common the student’s answer was. This approach 
achieved 5% improvement on average Kappa. The result showed 
that there is potential in this novel feature in learning analytics 
analyses. Many public dataset available online (e.g. the PSLC 
DataShop) decided to not reveal student answers out of a concern 
for privacy: in theory, someone could type in something that 
might give out their identity (e.g., “I am Barrack Obama and I 
don’t know how to do this problem!”). Of the 10 million answers 
a year we get at ASSISTments, a small portion might have such 
information. We suggest a compromised approach for sharing 
student answer data: release what the student types in for all 
common wrong answers using our operationalization of common 
wrong answer. If the student answered something unique, then it 
would not be shared. 

The result in this paper is likely to generalize to new systems 
which give hints. Many systems, such as cognitive tutor, 
Mastering Physics can easily compute most of the features in our 
models. For the class level features you do need to know the 
concept of class. Since most homework support systems have 
students nested inside of classes, the result should apply to many 
others systems. 

This work is still at the early stages. We see it as one of the 
incremental steps to build a useful tool for understanding and 
automatically adapting to differences in learner affect. There is 
still substantial room for improvement in compare with expert 
coders’ Kappa values (around 0.6 or 0.7). More features and 
different methods could be used to further improve the detectors. 
In the long-term, we could incorporate these detectors into the 
ASSISTments platform to help teachers to understand students’ 
affective states or provide interventions aim for better learning 
outcomes. 
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