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Chapter 5
Teacher Knowledge and Visual Access 
to Mathematics

Jill Neumayer DePiper and Mark Driscoll

Abstract We propose that there exists mathematical knowledge for teaching 
(MKT) specific to visual representations (VRs), abbreviated MKT-VR. We define a 
VR as a graphic creation, such as a diagram or drawing, which illustrates quantities 
and shows quantitative relationships or which illustrates geometric properties of 
figures and shows geometric relationships. A teacher with strong MKT-VR will, for 
example, be able to use and understand VRs in his/her own problem solving and 
will have mathematical knowledge specific to teaching students to use, analyze, and 
solve problems with VRs. The Visual Access to Mathematics (VAM) project seeks 
to help teachers understand the value of VRs, specifically when teaching and learn-
ing ratio and proportional reasoning content. This chapter lays out a theoretical 
framework that we anticipate using to guide and benchmark future research.

Keywords PCK · Mathematical knowledge for teaching · Visual representations · 
Student thinking · Teacher knowledge · Proportional reasoning

5.1  Introduction

The chapter describes a construct of mathematical knowledge for teaching (MKT) 
specific to visual representations (VRs), abbreviated MKT-VR, focused on the con-
text of ratio and proportion in particular. We detail why MKT-VR related to ratio 
and proportional reasoning is important for middle grades mathematics teachers, 
and how it relates to what is important for students. Following our discussion of the 
importance of MKT-VR, we describe our study on supporting teachers’ MKT-VR 
in teacher professional development, and how we are measuring teacher MKT-VR 
related to ratio and proportional reasoning. Beyond the topic of ratio and propor-
tional reasoning, we argue for an interest in studying MKT-VR across school math-
ematics. This would be consistent with growing evidence of the instructional 
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efficacy of visual representations for all mathematical content from kindergarten 
into high school.

5.2  Why Proportional Reasoning?

Middle grade mathematics sits at the crossroads in a student’s school mathematics 
journey: it marks the end of focused attention on number and operations, and it 
comes before other themes, such as geometry and measurement, which are explored 
in depth in high school. While middle grades mathematics classes are not always 
organized around a theme, proportionality is an overarching concept in these grades, 
and “one that unites, relates, and clarifies many important middle grades topics” 
(Lanius and Williams 2003, p. 392). Proportionality has been called the “corner-
stone of higher mathematics and the capstone of elementary concepts” (Lesh et al. 
1988, p.  98). As the capstone to elementary topics, proportionality as a concept 
builds from understandings about number and operations and invites connections to 
real-world situations and to variation. In mathematics in high school and beyond, 
during more in-depth studies of algebra, probability, geometry, and measurement, 
understanding of proportionality is a prerequisite, as relationships between quanti-
ties are key to functions and variation. Proportionality also has many important 
connections outside of mathematics. Proportional literacy serves all citizens well, 
whether it is by using unit rates to compare grocery prices, understanding the rele-
vance of growth rates in measuring economic health, or being aware of how popula-
tion proportions influence political decisions.

Proportional reasoning, including the study of proportionality, refers to a math-
ematical way of thinking, specifically: “in which students are solving problems 
about proportional situations: Proportional reasoning refers to detecting, express-
ing, analyzing, explaining, and providing evidence in support of assertions about 
proportional relationships” (Lamon 2007, p. 647). Reasoning proportionally does 
not mean just using a cross-product approach for solving problems but includes 
understanding when problems are proportional or not and what the situations mean. 
Proportionality may be illustrated: in descriptions of how quantities vary, such as 
“Mark earns $85 every two weeks…”; algebraically, as in linear functions, y = mx; 
or geometrically, as a line that passes through the origin (Lanius and Williams 
2003). Also foundational to proportional reasoning, students need to understand 
ratios both as composed units—e.g., that in the ratio 1:4, for every one unit of one 
quantity, there are four units of another quantity—or as multiplicative comparisons, 
where there are four times as many of the second quantity as the first (Lobato and 
Ellis 2010). Understanding proportionality, its applications, and how to reason pro-
portionally are foundational to middle grades’ students’ further studies, and atten-
tion to these areas can engage students in key mathematical content and practices.
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5.3  Tackling the Complexity of Proportional Reasoning 
with Visual Representations

Using visual representations (VRs) can support learners’ understanding of these key 
mathematical concepts and practices. VRs are a graphic creation, such as a diagram 
or geometric drawing, which illustrate quantities and/or geometric properties and 
show relationships among quantities and/or geometric figures1. Examples of VRs in 
rational number and proportional reasoning contexts are number lines and rectangu-
lar tape diagrams (sometimes called “strip diagrams”). Research specifically recom-
mends VRs to reinforce students’ conceptual understanding of rational numbers 
(Gersten et al. 2009; Siegler et al. 2010). A VR can call students’ attention to the 
quantities presented in a problem and the relationships between quantities. VRs can 
also scaffold students’ understanding of the symbolic approach to the problem (e.g., 
Siegler et  al. 2011), through, for example, presenting equipartitioning and high-
lighting relations among fractions, decimals, and percentages (Gersten et al. 2009).

As a tool, VRs can support problem solving, communication, and engagement. 
Using a VR can support students in making sense of the problem, and then subse-
quently make modifications in light of sense making, and select a solution strategy 
(Ng and Lee 2009). Visual representations can provide a bridge from text to arith-
metical or algebraic representations, which is a valuable support for all students and 
invaluable for students who are English Learners. VRs help students by linking the 
relationships between quantities in the problem with the mathematical operations 
needed to solve the problem. Opportunities to use mathematical visual representa-
tions provide students access to mathematics, support their engagement in problem 
solving, facilitate communication of their mathematical thinking, and develop the 
mathematical practices outlined in the CCSSM.

More generally, VRs are an element of multimodal communication. Multimodal 
mathematical communication refers to the various ways in which students convey 
their mathematical thinking, including language, gestures, drawings, or the use of 
tools (e.g., physical models, manipulatives, and technology). Students may use a 
combination of modes at once or different ones in isolation. To enhance mathemati-
cal learning opportunities for all students, particularly ELs and those struggling 
with language, research stresses the importance of creating classroom environments 
that encourage multimodal communication (Chval and Khisty 2001; Khisty and 
Chval 2002; Moschkovich 2002). Such environments can foster the development of 
the Standards for Mathematical Practice (SMP) that are articulated in the Common 
Core State Standards for Mathematics (CCSSM, CCSSM SMP; NGA & CCSSO 
2010) by providing students access to the mathematics, helping them construct via-
ble arguments, and providing opportunities to attend to precision by developing 
accurate mathematical language.

1 This definition of a mathematical visual representation is particularly germane to number and 
algebra contexts.
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A VR can also be a powerful tool toward eliciting the use of thinking aligned 
with the Standards for Mathematical Practice (SMPs). As much of middle-grade 
mathematics relates to quantities, spatial properties, and related problems solving, 
VRs can support learners in identifying and making sense of these quantities, prop-
erties, and relationships in ways that align with SMP 2 (reason abstractly and quan-
titatively) and SMP 7 (look for and make use of structure). Quantitative reasoning 
involves reasoning about the relationships among quantities and does not necessar-
ily need to involve algebraic expressions or assigning variables (Smith and 
Thompson 2007). SMP 2 emphasizes rich conceptual understandings and not reli-
ance of algorithmic thinking: “Quantitative reasoning entails habits of creating a 
coherent representation of the problem at hand; considering the units involved; 
attending to the meaning of quantities, not just how to compute them” (CCSSI 
2010, p. 6). SMP 2 specifically emphasizes the ability to decontextualize and con-
textualize when using mathematics to solve problems (NGA and CCSSO 2010), 
and a VR can present mathematics in ways that a symbolic representation does not. 
For example, suppose a word problem says that Maria has $10 more than Albert, 
and together they have $40. We can write a symbolic representation of this situation, 
say, M + A = (A + 10) + A = 40, with M and A representing, respectively, Maria’s 
amount and Albert’s amount. In doing so, we have decontextualized the situation, 
that is, abstracted the quantitative information. VRs can represent this same infor-
mation, support the decontextualizing and recontexualizing, and provide an artifact 
for that conversation. Using structure (SMP 7) is emphasized in proportional rea-
soning contexts, such as when learners use a double number line to note how, as two 
proportional quantities covary, the ratio between them remains invariant.

5.4  Student and Teacher Understanding of the Importance 
of Visual Representations

While VRs and opportunities to use them in mathematical thinking and learning can 
support mathematical reasoning, learning how to use a visual representation as a 
tool is a skill, in and of itself. Unlike geometry tasks, tasks where quantitative rea-
soning is prominent, such as algebraic word problems, usually do not provide visual 
representations. In such cases, knowing how to draw one’s own visual representa-
tions is a very valuable skill. The 2012 IES Practice Guide, Improving Mathematical 
Problem Solving in Grades 4–8, based on an examination of hundreds of relevant, 
rigorous studies, recommends teaching students how to use VRs to enhance their 
mathematical problem solving: “Students who learn to visually represent the math-
ematical information in problems prior to writing an equation are more effective at 
problem solving” (Woodward et al. 2012, 23). It is important to study and become 
proficient with a variety of visual representations and to understand how to select 
the representations most appropriate for solving a task (Woodward et al. 2012). This 
“includes knowing what particular representations are able to illustrate or explain, 
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and to be able to use representations as justifications for other claims” (Zbiek et al. 
2007, p. 1192). Furthermore, the importance of rich understanding of VRs is not 
limited to middle school students, as research has found that competent mathemati-
cal thinkers, in university-level mathematics, use VRs flexibly in problem solving 
(Stylianou 2002; Stylianou and Silver 2004).

The ability to interpret and construct various mathematical representations, and 
to change representations appropriately, is considered representational fluency or 
diagram sense. A learner needs to develop diagram sense—knowing when various 
VRs are most useful—for example, knowing that tree diagrams can help organize 
probabilistic thinking, that number lines are often handy for rational number tasks, 
and that tape diagrams can propel thinking about algebraic word problems. We 
know that learners need to develop number sense in order to judge the reasonable-
ness in their own and others’ calculations. We also know that number sense can be 
learned through ample opportunities to reason about numbers and operations. 
Similarly, we believe that visual representation sense can be learned through ample 
opportunities to represent problems and to reason with the diagrams.

A critical piece in supporting students’ representation fluency and fostering a 
culture of multimodal communication and engagement in the classroom in these 
ways is for teachers to value and encourage the use of mathematical VRs, especially 
as tools for reasoning and communicating mathematical thinking. For example, stu-
dents need a diet rich with representations and an opportunity to study a variety of 
VRs to be able to understand how to select the representations most appropriate for 
solving a task (Woodward et al. 2012). In our experiences across multiple studies on 
teacher instruction, however, we have observed that students’ opportunities for rea-
soning with and about quantities and relationships too often take a back seat to 
opportunities for students to practice computational procedures. The complex 
nature of proportional relationships is not consistently tackled in instructional situ-
ations. Without attention to conceptual understanding of relationships, learners may 
struggle to identify rates and ratios, reason about variation, or follow changes in 
units or analysis. Students may rely on algorithmic thinking, such as cross products, 
and not engage in reasoning proportionally, which does not strengthen their under-
standings of these key ideas.

Research has found that teachers may be less prepared in some mathematics 
content, as compared to other content areas, and specifically less prepared in the key 
areas of fraction and proportional reasoning and representing relationships (Siegler 
2011). In reasoning proportionally, teachers tend to rely on algorithmic thinking, 
such as the cross-multiplication algorithm in proportional situations (Orrill and 
Brown 2012; Riley 2010; Singh 2000), and may be using cross multiplication as a 
procedure without conceptual understanding. Teachers often focus student attention 
on operational understandings and algorithmic thinking, instead of developing their 
conceptual understandings of proportional reasoning (Lamon 2007). Lack of under-
standing of content may limit teachers’ ability to teach critical mathematics content: 
“Researchers typically do not associate reasoning with rule-driven or mechanized 
procedures, but rather with mental, free-flowing processes that require conscious 
analysis of the relationships among quantities” (Lamon 2007, p.  647). Teachers 
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need a rich understanding of mathematics content, many times noted as specialized 
mathematical knowledge for teaching (Ball et al. 2008; Ma 1999), and also under-
standings of visual representations in proportional reasoning, similar to how visual 
representations support student learning in these areas.

Evidence from our previous research from the IES-funded project, Mathematics 
Coaching for Supporting English Learners (MCSEL)2 and from others (Stylianou 
2011) suggests that US teachers in elementary and middle grades generally are nei-
ther experienced nor skilled in understanding and using VRs in mathematics. From 
analysis of teacher instruction and self-reflection, we identified a critical need in 
continuing to build teachers’ knowledge of how to use diagrams in their own math-
ematical problem solving. MCSEL developed and studied professional develop-
ment (PD) for middle grades mathematics teachers of ELs that emphasized the use 
of visual representations integrated with language support strategies. As we intro-
duced instructional activities to support students in using a visual representation 
when they approach tasks, we found that teachers also needed support in learning 
how to use visual representations in their own mathematical problem solving. 
Related research has also found that while teachers had important knowledge about 
proportions, their understanding of representations was not coordinated with their 
understanding of proportions (Orrill and Brown 2012). Participants in teacher pro-
fessional development were found to rely on addition and subtraction strategies, 
rather than multiplicative reasoning, and initially struggled with a double number 
line representation (Orrill and Brown 2012). This research supports these findings, 
and along with other literature, this suggests that teacher professional development 
needs to focus on building connections between representations and ratio/propor-
tional reasoning concepts and content.

Finally, we have also been struck by a common perception about VRs exhibited 
both by students and teachers—namely, that the primary purpose of a VR is to pres-
ent the product of one’s thinking about a mathematical task. No doubt this is a help-
ful role for VR, but it is far from the only, or even most valuable, purpose of creating 
a VR (e.g., Stylianou 2011). Rather, VRs can be really effective reasoning tools for 
learners trying to solve challenging mathematical tasks. This is a quality that makes 
them especially valuable for ELs. VRs are also communication tools, as students 
can use them to share their thinking and reasoning, and teachers can use students’ 
VRs to prompt them to discuss relationships between quantities. VRs, far from 
being just a product of student thinking, can be part of the process of mathematical 
thinking, reasoning, and communicating.

2 The Mathematics Coaching for Supporting English Learners research was supported by the 
Institute of Education Sciences, US Department of Education, through Grant R305A110076 to the 
Education Development Center, Inc. The opinions expressed are those of the authors and do not 
represent views of the Institute or the US Department of Education.
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5.5  Teacher Professional Development Focused on VRs 
and Proportional Reasoning Content

The Visual Access to Mathematics (VAM) project seeks to help teachers understand 
the value of VRs, specifically when teaching and learning ratio and proportional 
reasoning content. The NSF-funded VAM project3 is a multi-year design and devel-
opment project that includes the development, facilitation, and related research on 
teacher professional development. It seeks to advance knowledge in the field about 
supporting mathematics teachers of students who are English Learners (ELs) by 
developing and studying a 60-hour blended-learning professional development 
(PD) program for middle-grade mathematics teachers who teach ELs. Concentrating 
on ratio and proportion and related rational number concepts, and relying heavily on 
technology-supported artifacts of student thinking, the VAM professional develop-
ment (VAM PD) helps mathematics teachers of ELs become better at making, using, 
and analyzing VRs for mathematical problem solving, with the goal of improving 
teacher knowledge and practice. Embedding opportunities for students and teachers 
to use VRs in classroom environments in combination with teacher attention to and 
use of students’ thinking to create equity in mathematics instruction maximize the 
value of VRs. The VAM PD blends online and face-to-face components; it includes 
a summer institute, eight online sessions, and two face-to-face workshops. Both 
online and face-to-face sessions include activities that focus on developing teacher 
knowledge in four areas: teacher knowledge of visual representations for problem 
solving, mathematical knowledge for teaching ratio and proportional reasoning, 
analysis of student mathematical thinking, and instructional planning with visual 
representations and language access and production strategies.

As we develop the VAM PD, we are also studying if and how it supports teacher 
knowledge, analysis of student work, and instructional planning. We hypothesize 
that developing teachers’ abilities to use VRs for problem solving can improve 
teachers’ mathematics instruction and provide ELs greater access to learn produc-
tive mathematical reasoning. Two overarching questions guiding this work are: (1) 
What supports will allow mathematics teachers to develop the pedagogical content 
knowledge they need to support ELs in mathematical problem solving? and (2) 
What is the effect of VAM PD on teachers’ pedagogical content knowledge about 
using VRs to support mathematical problem solving? Key elements of the teacher 
intervention, teacher outcomes, and classroom/student outcomes are presented in 
the Theory of Change (Fig. 5.1). The focus in this PD and the related research is on 
the relationship between the VAM intervention and the teacher outcomes, as noted 
by the bold arrow in Fig. 5.1.

3 The Visual Access to Mathematics project is supported by the National Science Foundation under 
Grant No. DRL 1503057. Any opinions, findings, and conclusions or recommendations expressed 
are those of the author and do not necessarily reflect the views of the National Science Foundation.
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5.6  Defining Teacher Knowledge of VRs

In the VAM project, there are multiple ways in which we are seeking to understand 
the relations between participant experiences and their shifts in knowledge and 
practice. Specific to our goals of measuring teacher knowledge, we argue that there 
is a body of knowledge and set of skills associated with fluent use of VRs in math-
ematics learning and teaching, and we posit that VAM PD will promote such knowl-
edge and skills (Teacher Outcome 1). Our two different target sub-outcomes related 
to Teacher Outcome 1 (Teacher Knowledge of Visual Representations) further spec-
ify our interests in teacher learning: (a) improved the ability to use VRs to represent 
and solve ratio and proportional reasoning problems and (b) improved the ability to 
evaluate the strengths and limitations of different solutions involving VRs. It is 
important to revisit the rich educational research in the area of teacher knowledge as 
we define what teacher knowledge is as related to visual representations.

Thirty years ago, it was groundbreaking when Shulman (1986) placed a focus on 
the critical role of content knowledge in pedagogy, defining pedagogical content 
knowledge and identifying major categories of teacher knowledge that were content 
specific. As many others have expanded on this work, in mathematics education, 
Ball and colleagues (2005, 2008) have sought to define the knowledge needed by 
teachers, in order to better understand, measure, and support teacher knowledge. It 
is their definition that aligns with our current attention to teacher knowledge of VRs. 
Their working definition of mathematical knowledge for teaching is “the 
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 mathematical knowledge that teachers need to carry out their work as teachers of 
mathematics” (Ball et al. 2008, p. 4).

This attention to the work that teachers do as teachers is key in our understanding 
of teacher knowledge of VRs. As we emphasized in our earlier description of the 
importance of VRs, VRs support learners’ conceptual understandings of content, 
and understanding in mathematics contexts is content knowledge. As teachers need 
to know and understand VRs enough to be able to teach them to others and VRs 
support and are a tool for mathematical thinking and communication, then teachers’ 
VR knowledge is as much a tool for their own problem solving as it is a tool that 
teachers should teach with and teach their students to use.

5.6.1  Components of MKT-VR

Our VAM team theorizes that teachers need mathematical knowledge for teaching 
related to visual representations (MKT-VR), which includes both content knowl-
edge and pedagogical content knowledge, situated in the work of teaching of middle 
grades mathematics. In extending the Ball et al. (2008) framing of mathematical 
knowledge for teaching (MKT) to teaching and learning with VRs, we suggest that 
a teacher with MKT-VR will be able to use and understand VRs in his/her own 
problem solving and will have mathematical knowledge specific to teaching stu-
dents to use, analyze, and solve problems with VRs. A teacher with strong MKT-VR 
will integrate VRs into their teaching, will be able to generate inferences about 
students’ thinking from students’ VRs, and will consistently consider how to pro-
mote student use of VRs. Teachers need MKT-VR to conduct tasks such as identify-
ing correct solutions and solving mathematical problems for themselves. Teachers 
also need MKT-VR, which includes being able to provide students with explana-
tions for why particular solution strategies work, to diagnose student errors with 
different strategies and to understand nonstandard yet effective problem solving.

We believe that MKT-VR includes both content knowledge and pedagogical 
content knowledge related to VRs, and it can be defined broadly as a body of teacher 
knowledge and set of skills associated with fluent use of VRs in mathematics learn-
ing and teaching. While other models of MKT (Ball et al. 2008) further subdivide 
content knowledge and pedagogical knowledge into several subdivisions, at this 
time, we do not try to mirror these categories in our definition of MKT-VR. Instead, 
we seek to define the construct, and determine which understandings are key as 
related to VRs. CK-VR and PCK-VR are distinct but related elements of MKT-VR 
and related elements of middle-grade mathematics teacher knowledge. We theorize 
three important categories of MKT-VR, two within the area of content knowledge 
(CK) and one focused on pedagogical content knowledge (PCK), and we will refine 
these as we continue to learn from work with participants in the VAM PD.
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5.6.2  Content Knowledge Related to Visual Representations 
(CK-VR)

CK-VR is mathematics knowledge related to classroom instruction, students or 
teaching, specific to visual representations. While content knowledge for teaching is 
broader than CK-VR, we identify specific types of content knowledge specific to 
visual representations. As teachers in our work have engaged with VRs for their 
own mathematical learning and in classroom instruction, the importance of align-
ment of VRs to their purposes and the importance of strategic use of VRs in their 
work have emerged as two key areas of content knowledge. Alignment includes 
making connections between the mathematics task being considered and the solv-
er’s purpose (process or product), where there is attention to alignment with the 
nature of the task and alignment with purpose for using the VR. Strategic use is 
knowledge about how to use a VR in situation.

Alignment VRs can play multiple roles as a tool in problem solving and for com-
municating mathematical concepts and solutions with others (Stylianou 2011). VRs 
may support individual cognition by organizing information, recording information 
and reducing cognitive load, allowing manipulation of information and therefore 
facilitating exploration, and supporting the problem solver in monitoring progress 
and approaches (Stylianou 2011). Visual representations can also support commu-
nicating mathematically and be a tool in social practice for presenting obvious and 
not-so-obvious perspectives and information and for allowing the sharing of strate-
gies and negotiation of new ideas (Stylianou 2011). Because of these multiple roles 
that VRs can play in mathematical problem solving, key knowledge for teachers is 
an understanding of which VR to use when and how to align a VR to a goal. The 
goal may be focused on specific mathematics content, such as related to supporting 
or conveying understanding of unit rates, or it may be about communicating 
mathematically.

Strategic Use of VRs While a VR can serve multiple roles in mathematical problem 
solving, all VRs may not be equally effective. In our previous IES-funded MCSEL 
research, we identified four features of strategic use of VRs for mathematical prob-
lem solving4: 

• Clear representation of the given quantities in a problem.
• Clear representation of the relationships between the given quantities, including 

surfacing implicit relationships or attending to proportionality. In ratio and pro-
portional reasoning contexts, given quantities and relationships can be repre-
sented on a tape diagram and a double number line, and new quantities and 
relationships can be added to, or emerge, on a tape diagram and on a double 
number line to help solve the task.

4 Here we describe VRs in quantitative settings. For geometric settings, comparable wordings refer 
to geometric properties and relationships, instead of quantities and quantitative relationships.
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• Strong potential to reveal relationships visually between the given quantities and 
the goal quantity (connecting a VR to an algebraic or symbolic relationship). 
Effective VRs highlight connections between VRs and related symbols/calcula-
tions/algorithms.

• Identification within the VR of features related to important mathematical con-
cepts leading to the goal. The important concepts could include unit rate or mul-
tiplicative comparisons.

• Clear labels and markings (such as shading, labels, dotted lines, etc.) that sup-
port managing data, recording the flow of reasoning, and representing or com-
municating the quantities and relationships in the problem.

We argue that the alignment of a VR to the purposes listed above (i.e., under-
standing information, recording information, supporting exploration and problem 
solving, presenting perspectives, and sharing strategies) is enhanced through using 
a VR strategically with attention to the features listed above. For example, it is more 
strategic to represent quantities clearly and highlight implicit relationships when 
VRs are used to organize and record information. When VRs are used to share strat-
egies and ideas with others, labels and shading as well as attention to scale in the 
drawing may be important features of a VR to support its use as both a communica-
tion tool and a problem solving tool. A VR that identifies a unit rate or the relation-
ships between quantities may be a strategic use of a VR to support connections to 
algorithms or calculations and may align with mathematical goals.

These two aspects of MKT-VR are primarily CK-VR, though their implications 
are not strictly restricted to content. For example, a teacher response (VAM teacher 
participant, Session 4, November, 2016) presents how content knowledge and peda-
gogical knowledge intertwine in the areas of alignment and strategic use:

I love the idea that one can use two tape diagrams stacked on each other to make concrete 
visual comparisons of quantities, such as what we observe for the mixing paint tasks. …For 
the mixture problems, the other key idea to take away is that both tape diagrams must be the 
same size! (Like a common denominator…

In the response, the teacher appreciates that one can use the area in tape diagrams to 
compare paint mixture proportions, and notes alignment among task, content, and 
VR. Specifically, if the task is to decide if 4 parts blue paint mixed with 3 parts yel-
low paint is darker than a mixture of 5 parts blue to 4 parts yellow, one can divide 
one tape in a 4:3 ratio and another tape in a 5:4 ratio and see which tape has propor-
tionally more blue. The teacher adds that, to make this area comparison work, the 
two tapes need to be congruent, so there is a common unit guiding the measures. 
The response attends to why and how to use a VR and one with a common unit, 
therefore highlighting strategic use. We hypothesize that VAM PD will promote 
both types of CK among all teachers: knowledge of the alignment of VRs and how 
to use a VR strategically in mathematical problem solving.

Pedagogical Content Knowledge Related to Visual Representations (PCK–VR) We 
argue that a teacher with strong MKT-VR will have not only strong CK-VR but also 
strong pedagogical content knowledge related to VRs (PCK-VR). PCK includes 
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knowledge of common student errors and misconceptions (or knowledge of stu-
dents and content); mathematical models, representations, and contexts commonly 
used by or for students; and the ability to address and understand students’ interpre-
tation of mathematics (Ball et al. 2008; Campbell et al. 2014; Hill et al. 2008). We 
propose that PCK-VR includes these same elements, with an emphasis on VRs. For 
example, a teacher with high PCK-VR will have strong knowledge of how students 
think about or learn to use VRs and knowledge of how to teach problem solving 
with VRs.5

5.6.3  Measuring and Assessing MKT-VR

We define MKT-VR to include the sub-constructs CK-VR and PCK-VR, and we 
have two assessments to measure it. While the VAM project, in which the work to 
define this construct is currently embedded, does not include assessment develop-
ment as part of its scope, we are nevertheless developing two exploratory assess-
ments, described below. Assembling and developing our own assessments was 
necessary as we did not find any available assessments that focused on middle- 
grades teacher knowledge of visual representations that are appropriate given the 
scale of this study, where more than 100 teachers will participate in field testing of 
the PD. For example, previous research on mathematicians’ and college students’ 
understandings of VRs (Stylianou and Silver 2004) used interviews and compari-
sons of VR use between experts and did not focus on the content knowledge needed 
for the work of teaching. While research that involved interviews with teachers solv-
ing mathematics tasks with visual representations has provided information on how 
teachers use and understand VRs (Stylianou 2002), interviews are not appropriate 
for the scale of our study, and the interviews were not as narrowly focused on 
teacher knowledge and skills as we are in this work. It is also important to note that 
research on the importance of VRs for students’ problem solving focuses more on 
the student’s correct responses to tasks than it does on mathematical reasoning or 
communication (Boonen et al. 2014). Boonen et al., for example, make the distinc-
tion between a pictorial representation, an inaccurate visual-schematic representa-
tion, and an accurate visual-schematic representation. A distinction between a 
pictorial diagram and the visual-schematic may be too simplified for our purposes, 
as our participants are drawing diagrams that represent the mathematics (not pic-
tures of the problem context), and we seek to understand the nuances in their ability 
to do so. In addition, as we are interested in supporting teachers and students in 

5 Ball et al. (2008) write that pedagogical content knowledge may be subdivided into several sepa-
rate domains, including knowledge of content and students, knowledge of content and teaching, 
and knowledge of curriculum. In our definition of PCK-VR, we have not tried to define similar 
sub-constructs. Instead, we have tried to identify and include within a general PCK-VR construct 
the most important types of pedagogical content knowledge that teachers may need to teach math-
ematics with VRs effectively.
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engaging in the mathematics and gaining access to the task, we recognize that picto-
rial representations have value for supporting access and language production, and 
could serve as a tool for student or teacher learning, and thus would treat teachers’ 
knowledge about pictorial representations differently. Given this mismatch in pur-
pose and fit between existing measures related to VRs and our endeavor to under-
stand MKT-VR, we have decided to create two exploratory assessments.

The MKT-VR multiple-choice assessment is based on existing instruments and 
their items and seeks to measure target outcomes of VAM PD.  To assemble the 
assessment of teachers’ MKT-VR, the team has followed general scale development 
guidelines suggested by DeVellis (2012). Due to project constraints, the team 
restricted the scale’s format to multiple-choice items and used items from estab-
lished assessments of MKT rather than write original items. After the team devel-
oped a list of key skills that the assessment would target, the team reviewed existing 
test banks and assessments and selected an item pool of 30 multiple-choice items 
that could potentially measure these skills. Items came from the following sources: 
the Learning Mathematics for Teaching assessment (2009); research by DePiper 
et al. (2014); the National Assessment of Educational Progress (NAEP, grades 4 and 
8); released items from the Educational Testing Service’s Praxis tests (focusing on 
elementary and middle grades mathematics); and released items from the 
Massachusetts Comprehensive Assessment System (MCAS). Because items were 
drawn from different sources, the number of distracters associated with each item 
ranges from 3 to 5. The team tried to generate redundancy of items to measure indi-
vidual skills (DeVellis 2012).

As there are limits in understanding teacher thinking when using a multiple- 
choice format instead of an open-response assessment, we have also developed an 
assessment that is an open-response analysis of VRs that are provided to the respon-
dent. We have other measurement tools within the VAM research plan that will 
measure other types of teacher knowledge of student thinking and teacher practice 
in classrooms, related to Teacher Outcomes 2–4  in the Theory of Change (see 
Fig. 5.1), which will provide different information about teacher PCK-VR and will 
complement the findings from these multiple-choice and open-response assess-
ments of MKT-VR.

MKT-VR Multiple-Choice Assessment We assembled an assessment using multiple- 
choice items from other established instruments to measure both of these sub- 
constructs, CK-VR and PCK-VR. The goal of analysis of the assessment responses 
will be to draw inferences about teachers’ abilities to make and use effective VRs in 
their own rational number problem solving (CK-VR) and to use VRs for teaching 
mathematical problem solving as well as for understanding students’ mathematical 
thinking (PCK-VR). We seek to draw inferences about CK-VR and PCK-VR as 
separate sub-constructs and about MKT-VR as a whole.6

6 Our overall project hypotheses are the following: Compared to control group teachers, teachers 
who participate fully in VAM PD will demonstrate higher (1) MKT-VR, (2) MKT related to ratio 
and proportion, (3) ability to analyze student thinking, and (4) ability to plan lessons and activities 
that integrate VRs and language strategies in mathematical problem solving. The MKT-VR assess-
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To assemble this MKT-VR assessment, we reviewed existing test banks and 
assessments including the Educational Testing Services (2013), Learning 
Mathematics for Teaching assessment (2009), NAEP (2009), and Pearson (2013a, 
b) to identify items that responded to the types of knowledge and skills that teachers 
should carry and display to demonstrate CK-VR and PCK-VR when presented with 
multiple-choice items. We acknowledge that the identified knowledge and skills 
may be a subset of all the capacities and that may be associated with MKT-VR, but 
given the scope of this study, we focused on those that may be most easily measured 
with multiple-choice items. Specifically, the knowledge and skills related to CK-VR 
are items that ask participants to (a) decode quantities and relationships from a VR, 
(b) translate a problem into a VR, and (c) find a solution from a VR. An example of 
a CK-VR item is presented in Fig. 5.2. The knowledge and skills related to PCK-VR 
are items that ask participants to identify approaches using VR to support students’ 
specific mathematical understanding. The items related to PCK-VR include asking 
participants to identify approaches using VRs to support students’ specific mathe-
matical understanding, including selecting appropriate VRs for teaching specific 
concepts, and posing appropriate questions of VRs to promote specific 
understandings.

All items on the MKT-VR assessment are in the content areas of rational number, 
ratio, and proportion. These topics are critical content areas in middle-grades 

ment will be used to test first hypothesis. If pilot testing and expert review indicate that we may 
have valid and reliable subscales measuring CK-VR and PCK-VR, we may explore treatment vs. 
control group differences in scores on these subscales as well.

Fig. 5.2 Sample MKT-VR 
item. (MTEL 2011)

J. N. DePiper and M. Driscoll



97

 mathematics, as emphasized by the CCSSM, and research suggests that proportion-
ality is a unifying theme across the middle grades (Lanius and Williams 2003). The 
areas of rational number, ratio, and proportion are also the focus of the VAM PD 
project. Within these content areas, we selected items that focused on proportional 
relationships, number lines, and problem solving with fractions and ratios. The 
assessment will be given to treatment and control teachers, and in analysis, we will 
compare scores of treatment teachers to scores control teachers, controlling for pre-
test scores.

MKT-VR Open Response Exercise As we assembled the MKT-VR multiple-choice 
assessment and reviewed the qualities and utilities of VRs, we determined that our 
study would benefit from an additional assessment to measure other aspects of VR 
knowledge, particularly more performance-based skills. This measure of MKT-VR 
is a measure that is closely related to VAM PD and is only given to treatment teach-
ers, to look for pre-post change (and will not be used to compare treatment and 
control teachers).

The Open Response Exercise will measure teachers’ abilities to identify and 
describe quantities and relationships in a VR and to compare two solutions involv-
ing VRs, by describing the strengths and limitations of each solution and/or the 
reasoning behind using a specific VR for a task. In the assessment, participants need 
to (1) read a ratio or proportional reasoning task, (2) review two completed VRs to 
the ratio or proportional reasoning task, (3) identify and describe the quantities and 
relationships shown in the different approaches, and (4) provide advantages for the 
use of each type VR for teaching students about key ratio and proportional reason-
ing concepts. An excerpt from the Open Response Exercise is presented in the 
Appendix.

While we considered designing an assessment that would ask participants to cre-
ate their own VRs to solve a mathematics task, we determined that we did not have 
the capacity to score what could be a wide range of VRs. Our focus on exploring 
participants’ abilities to identify and describe the mathematical ideas represented in 
a specific set of VRs and their affordances prompts participants to engage in analy-
sis of VRs, which may support assessment of higher levels of thinking about VRs. 
This assessment continues to focus on many of the same qualities of VRs as the 
multiple-choice assessment and emphasizes the utility of VRs while also focusing 
attention on comparison and evaluation.

The prompts on the Open Response Exercise focus on participants’ abilities to 
identify and discern key quantities and relationships in the VR and to analyze pro-
vided VRs for use with a specific mathematics task. In the Open Response Exercise, 
we seek to understand if and how participants detail and discuss the strengths and 
limitations of different VR-based approaches for solving the specific problem, 
including attending to the quantities and relationships shown in the different 
approaches; alignment and relations among task, VR, and mathematics; and expla-
nation of reasoning about the details of VR use for the mathematics task.

Analysis of teacher responses will be scored using two rubrics. First, teachers’ 
responses on identifying and describing mathematical relationships in a VR used to 
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solve a task will present their ability to describe how to use a VR to solve a ratio and 
proportional reasoning task (see Appendix). To demonstrate this ability, the partici-
pant must use (or describe how to use) quantities and relationships of the VR to 
solve the task and must link quantities and relationships in the VR to at least one key 
ratio and proportional reasoning idea. Scoring of responses will differentiate among 
evidence and no evidence of each component of the ability. Then, teachers’ responses 
on describing if and how to use on VR for teaching students about specific ratio and 
proportional reasoning concepts will present participants’ ability to describe the 
advantages of using one VR over another for teaching unit rate problems. To dem-
onstrate this ability, the participant must (a) accurately identify specific quantities, 
relationships, or key ratio or proportional reasoning ideas that are more or less vis-
ible in one VR than the other and (b) justify by providing one or more reasons for a 
specific advantage of the tape diagram/double number line for helping students 
solve or understand how to solve unit rate problems with this type of VR. Scoring 
of responses will differentiate among evidence and no evidence of each component 
of the ability. We have used the rubrics with pilot data and refined them, coordinat-
ing with the VAM project team to make sure that we are measuring the key compo-
nents and abilities of MKT-VR.

5.7  Discussion and Conclusion

As we seek to measure MKT-VR, we are aware of the multiple purposes and roles 
of VRs and the connections to mathematical communication, and we are interested 
in how increased teacher knowledge of VRs, specifically as related to alignment and 
strategic use of VRs, relates to instructional practices and equitable opportunities to 
learn: accepting that VRs can support student engagement in mathematics content, 
tasks, and practices, teacher knowledge likely plays a key role in student opportuni-
ties to learn about and use VRs. Thus not only do teachers need a robust understand-
ing of the purposes of visually representing mathematics, the roles of VRs in 
instruction (Stylianou 2010), and relations between accurate and inaccurate VRs to 
students’ problem solving (e.g., Boonen et al. 2014), they need to be able to coordi-
nate these different ideas and wrestle with the complexity of their VRs and students’ 
VRs. For example, being strategic with VR use shifts according to contexts and 
content, and a VR can be a tool in communication even when it may include impre-
cise number or line placements. To address this complexity of MKT-VR, we are 
developing multiple measures for understanding teacher MKT-VR, and it will be 
important to coordinate teachers’ responses across measures to better understand 
the teacher knowledge for mathematics as related to VRs. This paper has laid out a 
theoretical framework that we anticipate using to guide and benchmark future 
research.

In addition, research needs to continue to seek to understand how teacher knowl-
edge relates to instruction. We posit that teacher knowledge about VRs and related 
instructional practice that engages students in the doing of VRs themselves are 
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 critical to supporting all students’ engagement in mathematics. VRs can be a key 
engagement and communication tool at the middle grades and can support rich 
understandings of content; researchers and the CCSSM recommend the use of 
visual representations in elementary and middle grades, especially number lines and 
tape diagrams. In addition, VRs are a tool used in mathematics classes for students 
who are English Learners around the work. VRs were promoted in the CCSSM as 
writers were influenced not only by the connections to content but by the effective 
use of VRs in other countries’ schools, particularly Japan, China, and Singapore. 
Since most students in Singapore public schools are native Chinese speakers, who 
are taught and tested in English, Singapore students’ experience and success in 
learning as measured on international assessments influenced our own work to sup-
port mathematics teachers of English Learners, in particular, our work to build 
teachers’ own VR understanding and skills.

To support students who are English Learners, and specifically through opportu-
nities to learn mathematics with VRs, we first need to understand how to measure 
and supports teachers’ representational fluency or their MKT-VR. In this project, 
we are focused on ratio and proportional reasoning, and related visual representa-
tions, seeking to support teacher knowledge in this area (MKT-VR) and their knowl-
edge of instructional practices with VRs. This project is laying the groundwork 
around future work to investigate whether MKT-VR has other features that should 
be defined related to different mathematical content, and other ways to support 
teacher knowledge. Future research should continue to look into how to support and 
measure teacher knowledge across content areas and grade levels, particularly with 
an eye to equity and access and promoting mathematical communication and rea-
soning beyond algorithmic and procedural understandings.
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 Appendix

 Excerpt from MKT-VR Open Response Assessment
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