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Abstract 

Detailed performance data can be exploited to achieve 

stronger student models when predicting next problem 

correctness (NPC) within intelligent tutoring systems. 

However, the availability and importance of these 

details may differ significantly when considering 

opportunity count (OC), or the compounded sequence 

of problems a student experiences within a skill. 

Inspired by this intuition, the present study introduces 

the Opportunity Count Model (OCM), a unique approach 

to student modeling in which separate models are built 

for differing OCs rather than creating a blanket model 

that encompasses all OCs. We use Random Forest (RF), 

which can be used to indicate feature importance, to 

construct the OCM by considering detailed performance 

data within tutor log files. Results suggest that OC is 

significant when modeling student performance and 

that detailed performance data varies across OCs. 
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Introduction 

Despite the fact that detailed performance data has 

been shown to enhance student modeling within 

intelligent tutoring systems [1,2,5], little focus has 

been given to the critical significance of opportunity 

count (OC), or the compounded sequence of skill 

opportunities within a student’s learning experience. It 

seems intuitive that the availability and importance of 

details within logged tutor data would vary based on 

OC: modeling certain performance details on a 

student’s 3rd skill opportunity may reveal more about 

learning than modeling the same details on a student’s 

7th opportunity. Considering OC could also reduce the 

noise inherent to modeling few OCs through more 

flexible modeling of performance details. 

The present work introduces the Opportunity Count 

Model (OCM) and investigates the significance of 

considering OC in student models. The OCM builds 

separate models for differing OCs by using Random 

Forest to determine fluctuations in the importance of 

student performance details across a dataset stratified 

by OC. We seek to validate the OCM, by answering the 

following research questions: 

1. Can the accuracy of models predicting next 

problem correctness (NPC) be enhanced by 

aggregating separate models for differing OCs 

when considering additional details of a student’s 

performance? 

2. Is there variation in the importance of particular 

student performance details across OCs? 

Dataset and Method 

We examined the effectiveness of the OCM using a 

dataset comprised of student data logged between 

September 2012 and August 2013 within 

ASSISTments, a popular intelligent tutoring system for 

mathematics [3]. The dataset contained performance 

details for 85,862 problems logged by 3,210 unique 

students spanning 70 unique Skill Builders (see side 

panel). 

The dataset included OC, student ID (St), skill ID (Sk), 

correctness (Ct), number of attempts (Att), first 

response time (FRT), percentage of hints requested 

(%H), first action (FA), and historical accuracy (% HA) 

(see final side panel for more detail). Table 1 depicts an 

example from the dataset. Student 34 has two skill 

opportunities for ‘Skill 5’, makes a single attempt on 

the first and two attempts on the second, and solves 

both in approximately 30 seconds. She immediately 

solved the first skill opportunity but required 60% of 

available hints on the second skill opportunity, 

requesting a hint before even attempting to solve the 

problem (FA = 1). Percentage values were discretized 

by units of 20% to simplify our modeling approach. For 

example, HA of 64% was discretized to 60%. 

We used MATLAB’s implementation of Random Forest 

(RF, see side panel) to build the OCM and make 

predictions about student performance [4]. We divided 

the dataset into training and testing segments, and 

developed 100 regression trees using the training set. 

Within this process, subsets of the training data were 

repeatedly sampled with replacement to construct the 

trees. 
 

OC St Sk Ct Att FRT(10s) % H FA % HA 

1 34 5 1 1 3 0 0 0 

2 34 5 1 2 3 60 1 100 

1 56 5 0 1 2 0 2 0 

Table 1: A subset of data with OC and performance details. 

Helpful Definitions 
 

Skill Builder: Skill Builders 

are a type of problem set 

within ASSISTments based on 

mastery learning. To master a 

skill, students must accurately 

answer three consecutive skill 

opportunities. High performing 

students are likely to have 

fewer OCs, while struggling 

students are likely to have 

higher OCs. As OC increases, 

data points grow scarcer as 

students master the skill or 

drop out of the assignment. 

Each Skill Builder is identified 

by a unique skill ID. 
 

Random Forest: Random 

Forest is a proven method for 

making predictions when 

considering a variety of 

features [6]. The method 

trains regression trees based 

on decision splits made from 

a random subset of data 

features. The resulting output 

offers a prediction model 

based on an ensemble of 

regression trees. Random 

Forest can also be used to 

succinctly define the degree 

of importance a feature holds 

within a model. 
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As RF progresses through the process of building 

decision trees, subsets of features are chosen randomly 

to establish node splits. The number of features, n, in 

this subset can be limited to enhance predictive 

accuracy. For our current work, we explored a wide 

range of student performance details (or model 

features), ultimately retaining the n with minimum out-

of-bag error (see side panel) when applying RF to the 

test set.  

We ran and tested RF for each OC, using segments of 

the dataset. For comparison, we also constructed a 

Traditional Model (TM), or a single model encompassing 

all OCs. Within the TM, it is possible to consider or 

ignore OC as a feature, resulting in two types of TMs: 

TM without OC (TMNOC) and TM with OC (TMOC). The 

code used for this process is available at [7].  

RF was used to examine the predictive accuracy of the 

TMNOC, the TMOC, and the OCM, and to quantify 

feature importance (see side panel) within each model. 

Five-fold cross validation was used to assess predictive 

accuracy. Predictive accuracy is represented here by 

the root mean squared error (RMSE) of test sets. 

Results 

Figure 1 shows the RMSE of model predictions for next 

problem correctness at various OCs. Data points at the 

5th OC represent error in predicting correctness on the 

6th OC. Feature importance was generated while 

running RF for each feature within each fold, and 

ultimately averaged across folds. Table 2 presents 

relative feature importance within the OCM. 

Discussion 

The OCM distinctly outperforms both TMs (except when 

OC = 11). This is not necessarily surprising. The OCM  

Figure 1: Prediction accuracy of three models. The point at 

the ith OC shows the prediction accuracy of ith +1 correctness. 

OC Sk Ct Att FRT (10s) % H FA HA 

1 6.31 0.85 0.80 1.16 0.73 0.69 0.00 

3 7.12 1.10 0.23 1.36 0.71 0.64 1.86 

5 6.06 0.69 0.48 0.91 0.39 0.66 0.42 

7 2.87 0.57 -0.05 -0.17 0.33 0.19 0.46 

9 3.25 0.42 0.17 0.17 0.18 0.11 0.23 

 Table 2: Feature importance within the OCM at different OCs. 

builds a separate model for each OC. In general, it has 

many more parameters (i.e., degrees of freedom) than 

TMs. While this observation is somewhat obvious, it 

suggests that OC is a critical feature to consider when 

modeling student performance (RQ1). We also 

observed a trend in the difference of prediction 

accuracy between models. The OCM is less accurate in 

later OCs. At the 11th OC, TMs begin to outperform the 

OCM within our dataset. We suspect that this is caused 

Helpful Definitions 
 

Out-of-bag Error [4]:  A 

subset of training data is left 

out when building each tree, 

thereby leaving a portion of 

data “out of the bag.” After 

building a tree, the out of bag 

subset is applied to the tree 

and arrives at a prediction. 

The root mean squared error 

(RMSE) of prediction for all 

out-of-bag cases becomes 

known as the out-of-bag 

error. 

Feature Importance: When 

assessing the importance of a 

feature, m, values of m are 

randomly permuted in out-of-

bag cases. A secondary 

measure of out-of-bag error 

is then calculated based on 

the permuted data. The 

difference between this 

secondary out-of-bag error 

and the original out-of-bag 

error is regarded as the 

importance of feature m. The 

larger the difference in error, 

the more important the 

feature is to the model. 

Negative values suggest a 

feature that is useless or 

even harmful in prediction. 
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by the reduction of data points as OC increases. As OC 

increases, data points grow scarcer as students either 

master the skill or drop out. Therefore, at later OCs, 

the OCM has fewer cases on which to train and test.  

Findings also suggest that feature importance varies as 

OC changes, justifying use of the OCM when 

considering performance details in student modeling 

(RQ2). Results presented in Table 2 revealed that 

feature importance differed considerably with increases 

in OC. When considering an OC of 3, aside from the 

importance of the skill itself, the most relevant features 

within the model were first response time and historical 

accuracy. However, when considering an OC of 7, first 

response time was no longer important and may have 

actually hindered prediction accuracy. Examining 

feature variation in this way allows us to discriminate 

important factors across different phases of learning. 

For example, the skill itself is more important with 

fewer OCs, but with higher OCs, importance shifts to 

other features. This may suggest that at later modeling 

stages, researchers should focus less on the refinement 

of skill content and more on factors pertaining to 

individual students. While it is difficult to draw any 

specific conclusions here based on these results, it is 

worth future investigation. 

Contribution 

The present work revealed that OC is an important 

factor for the community to consider when modeling 

student performance. Further, our finding that the 

importance of features varies across OCs establishes a 

call for further examination of the significance of 

student performance details at different learning 

phases. 
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Helpful Definitions 
 

Correct (Ct): A binary 

measure of accuracy on first 

attempt.  

Attempts (Att): The number 

of attempts made before 

arriving at a correct solution. 

First Action (FA): The first 

thing a student does within a 

skill opportunity. Students 

may attempt to solve (0), 

request a hint (1), or request 

a scaffold (2).  

First Response Time 

(FRT)(10s): The time 

between opening a skill 

opportunity and making a 

first action. This measure was 

groomed to remove outliers 

larger than 400ms (less than 

1% data loss) and to simplify 

the time structure to 10-

second increments.   

Percent of Hints Used 

(%H):  The percentage of 

available hints requested by a 

student within a skill 

opportunity. 

Historical Accuracy (HA): 

Generated to compile a 

student’s percentage of 

correctness across prior OCs 

within a skill.   
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