
 
Workshop Approaching Twenty Years of 

Knowledge Tracing (BKT20y) 
 
Knowledge Tracing is an extremely popular method for student modeling because of its 
capability to infer a student’s dynamic knowledge state in real time as the student is 
observed solving a series of problems (Corbett & Anderson, 1995). After its 
introduction in 1995, many extensions to the original technique have been proposed to 
improve its predictive accuracy. Variants include: fitting model parameters to 
individuals rather than populations (e.g., Lee & Brunskill, 2012; Yudelson, Koediger, & 
Gordon, 2010), contextualizing model parameters based on past and current usage of 
an intelligent tutoring system (Baker, Corbett, & Aleven, 2008, Baker et al., 2010; 
GonzálezBrenes, 2014; Pardos et al., 2010) and on latent characteristics of students 
and problems (Khajah et al, 2014), clustering similar students and sharing parameters 
among them (Pardos et al, 2012), soft sharing of parameters via hierarchical Bayesian 
inference (Beck & Chang, 2007; Beck, 2007), and considering knowledge state as a 
continuous variable (SohlDickstein, 2013; Smith et al., 2004).  
 
As we approach twenty years since the introduction of Knowledge Tracing, what 
lessons have we learned? This workshop's motivation is to open the floor for the 
discussion of the recent advances in Knowledge Tracing and student modeling in 
general, take stock of the promises and failures of current approaches, and work 
toward developing integrated approaches. 
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Additionally, the workshop scheduling will include the full talk “EEG Helps Knowledge 
Tracing!” based on the following paper: 

Xu, Y., K.-M. Chang, Y. Yuan, and J. Mostow. EEG Helps Knowledge Tracing! 
In Proceedings of the ITS2014 Workshop on Utilizing EEG Input in Intelligent 
Tutoring Systems. 2014: Honolulu, p. 43-48. 
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Choosing Sample Size for Knowledge Tracing Models ∗

Derrick Coetzee
University of California, Berkeley

dcoetzee@berkeley.edu

ABSTRACT
An important question in the practical application of Bayesian
knowledge tracing models is determining how much data is
needed to infer parameters accurately. If training data is
inadequate, even a perfect inference algorithm will produce
parameters with poor predictive power. In this work, we
describe an empirical study using synthetic data that pro-
vides estimates of the accuracy of inferred parameters based
on factors such as the number of students used to train the
model, and the values of the underlying generating param-
eters. We find that the standard deviation of the error is
roughly proportional to 1/

√
n where n is the sample size,

and that model parameters near 0 and 1 are easier to learn
accurately.

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining

General Terms
Measurement,Theory.

Keywords
Educational data mining,knowledge tracing,sample size

1. INTRODUCTION
Simple Bayesian knowledge tracing models a student’s ob-
served responses to a sequence of items as a Markov process,
with their knowledge state as a hidden underlying variable.
If values are given for the four standard parameters, learn-
ing rate, prior, guess, and slip, the likelihood of a particular
set of response sequences can be computed. Using standard
search procedures like expectation maximization (EM), the
parameter set giving the highest likelihood for a given set of
sequences can be determined, provided that the procedure
converges to the global maximum.

∗This work published at the BKT20y Workshop in conjunc-
tion with Educational Data Mining 2014. The author waives
all rights to this work under Creative Commons CC0 1.0.

However, even if the procedure identifies the global maxi-
mum correctly and precisely, the resulting parameters may
not reflect the actual parameters that generated the data;
this is a sampling error effect. It’s clearest with very small
samples, such as samples of size 1, but exists with larger sam-
ples as well. Empirical studies with synthetic data generated
from known parameters show that the inferred parameters
for a given data set can differ substantially from the gen-
erating parameters, and this same issue would arise in real
settings. An understanding of the magnitude of sampling
error in a particular scenario can help to explain why the
resulting model does or does not make effective predictions.
Moreover, by providing a means to describe the distribution
of possible generating parameter values, the uncertainty of
calculations based on those parameters such as predictions
can also be determined.

2. RELATED WORK
For simple problems, such as identifying the mean value of
a parameter in a population, or the proportion of the popu-
lation falling into a subgroup, there are simple and well-
understood statistical approaches for determining sample
size based on statistical power. Such analytic approaches
are not immediately applicable to the problem of minimiz-
ing the HMM error function because of its complexity and
high dimensionality.

Falakmasir et al [2] have noted that training time increases
linearly with the size of the training set. Choosing an ap-
propriate sample size for a certain desired level of accuracy
can thus help to reduce training time, which is important
both for research and in some real-time interactive tutor
applications.

Nooraei et al [3] found that using only the 15 most recent
data points from each student to train a knowledge trac-
ing model yielded root mean-square error during prediction
comparable to using the student’s full history. For one data
set, the most 5 recent items sufficed. Our study conversely
does not vary the number of items per student, but instead
varies the number of students and the four parameters gen-
erating the data. By allowing sample size to be reduced
to meet a desired accuracy, our work offers an orthogonal
method of further reducing training time.

De Sande [8] has suggested that as samples become larger,
models with small parameter sets may no longer be rich
enough to capture the sample’s complexity. Thus our exclu-
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Figure 1: Given the fixed model learn=0.2,
prior=0.4, guess=0.14, slip=0.05, we generated
10000 samples with 1000 students each, and for each,
inferred all four parameters using EM. The distribu-
tion of the inferred learning rate parameter over the
samples is above. The mean differs by 3× 10−6 from
the true generating parameter 0.2. The standard
deviation is 0.01121, and the orange line shows the
expected height of each bar if the proportions pre-
cisely followed a normal distribution. Scipy’s nor-
maltest [7] rejects that the distribution is perfectly
normal (p < 0.0002), and a small amount of negative
(left) skew is visible; the median is 0.00016 smaller
than the mean. But the distribution is close enough
to normal for our purposes.

sive reliance on a simple four-parameter BKT model even
for very large samples is a limitation of our approach.

3. METHODOLOGY
In our experiments we relied on a simple standard Bayesian
knowledge tracing model with four parameters: learning
rate, prior, guess and slip. There is only one value for
each parameter, and no specialization by student or prob-
lem. Each synthetic student responded to five items; we
do not vary this parameter in this study, since Nooraei et
al [3] report that increasing this parameter has diminishing
returns, but future work may investigate it.

We generate separate datasets for each of our experiments.
In each case, we enumerate a sequence of models (each spec-
ified by values for learn, prior, guess, slip, sample size), and
for each of those models, we generate a large number of
random samples consistent with that model. For example,
for a particular model, we may generate 1000 samples each
containing 1000 students.

We then run EM on each sample to find the parameter set
giving the maximum likelihood value. All parameters are
permitted to vary during the search. EM is run starting
at the generating parameters and run until fully converged
(within 10−12 or until 100 iterations are complete). Start-
ing at the generating parameters is not feasible in a realistic
setting, but here it allows EM to run quickly and consis-
tently reach the global minimum. As shown in Figure 1, the
parameter values inferred from these samples approximate
a normal distribution with a mean equal to the generating
parameter.

Finally, we take all samples generated from a single model
and, for each parameter, record the mean and standard devi-
ation of the inferred values for that parameter. We chose the
number of samples generated for each model large enough
so that these statistics remain stable under repeated runs.
Mean values for each parameter were consistently near the
generating parameter, typically within at most 0.1 standard
deviations. Standard deviation provides an estimate of vari-
ation in the inferred parameter values, and is plotted. Dif-
ferent models yield different standard deviation values.

Because of the very large number of large samples involved
in this approach, we use the fastHMM C++ BKT library
designed by Pardos and Johnson [5] to quickly generate
datasets and perform EM, invoked from a Matlab script.

3.1 Varying one parameter
In our first experiment, we start with typical, plausible val-
ues for all four parameters: learn=0.2, prior=0.4, guess=0.14,
slip=0.05. These values are consistent with prior work that
found large guess and slip values (> 0.5) to be implausible in
most scenarios [6], and in our 5-problem scenario, the chance
of learning the material by the end is about 67%, which is
reasonable.

Then, for each of the four parameters, we hold the other
parameters at their single plausible value, and vary the re-
maining parameter from 0 to 1 in steps of 0.01. This results
in 404 total parameter sets.

For each parameter set, we generate 1000 random samples
of 1000 students each. In this experiment, the number of
students is fixed at 1000, which is large enough to consis-
tently produce a standard deviation not exceeding 0.03 —
this avoids the boundary effects near 0 and 1 that would
occur for very small samples.

In this experiment, we focus on the variance of our estimates
of the parameter that is being varied, and don’t consider
variance of the other (fixed) parameters.

3.2 Interactions between parameters
In this experiment, similiar to the first, we hold three pa-
rameters fixed (learn=0.2, prior=0.4, guess=0.14), and vary
slip between 0 and 1 in steps of 0.01. This gives 101 pa-
rameter sets. For each, we generate 1000 random samples of
1000 students each. However, in this experiment we exam-
ine variance of our estimates of all four parameters, rather
than just the one being varied (slip). This experiment helps
to demonstrate to what extent varying one parameter can
affect the difficulty of accurately inferring other parameters.

3.3 Varying sample size
In our third experiment, we fix the value of all four pa-
rameters, but vary the sample size in powers of two from
2 to 2097152. For sample sizes below 10000, we generate
1000 samples of that size, while for those above we generate
100 samples. The parameter values are heuristically chosen
based on the prior experiments above to generate large error
values (but not necessarily the worst possible error). We ex-
amine how variation of our estimates of all four parameters
varies with sample size, and identify any trends.
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Figure 2: Variation of inferred parameters, based on
underlying generating parameter. For each curve,
all parameters other than one being examined are
fixed at plausible values. Values near 0 and 1 are
the easiest to infer accurately, and each parameter
exhibits a unique pattern.

3.4 Interaction between sample size and pa-
rameters

In our final experiment, we vary both the learning rate (from
0 to 1 in steps of 0.01) and the sample size (between the val-
ues 1000, 10000, 100000) at the same time. This enables us
to examine whether there is any interaction between param-
eters and sample size. For 1000 and 10000 students we use
1000 samples, while for 100000 students we use 100 samples,
to reduce runtime.

4. RESULTS
4.1 Varying one parameter
As described in section 3.1, in this experiment we vary each
parameter between 0 and 1 while holding the other parame-
ters fixed, and examined how the variation in our inference
of that parameter changed with its value. As shown in Fig-
ure 2, parameters with values near 0 or 1 are easier to ac-
curately estimate, while those with values in the 0.4 to 0.8
range are more difficult to infer. Each parameter exhibits a
unique pattern, with prior behaving worst for small values,
guess behaving worst for values in the middle, and learning
rate performing worst for the largest values. Slip is unique
in having two peaks in its curve near 0.5 and 0.8.

4.2 Interactions between parameters
As described in section 3.2, in this experiment we vary slip
between 0 and 1 while keeping the other parameters fixed,
and examine how the variation of all four inferred parame-
ters varies, as shown in Figure 3. All variance values exhibit
a strong, complex dependence on the slip parameter—in par-
ticular there is a dramatic and unexpected drop from large
variance to small variance around slip=0.85. We conclude
that the variance of an inferred parameter depends not only
on the value of that parameter, but also the values of other
parameters.

4.3 Varying sample size
We fix the parameters at the values empirically determined
in section 4.1 to give maximum variance (roughly based on
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Figure 3: As the slip parameter is varied and
the other parameters are held fixed (learn=0.2,
prior=0.4, guess=0.14), the error in our inference
of all other parameters varies in a strong and com-
plex fashion, indicating interactions in the inference
of different parameters.

the maximums of the curves, with prior and guess at 0.5, and
learning rate and slip at 0.67). Because section 4.2 suggests
that there are interactions between parameters, this may not
give the worst-case variance possible of all combinations, but
it is a reasonable starting point for realistic values.

As described in section 3.3, sample size is varied in powers of
two from 2 to 2097152. Figure 4 shows the result, suggesting
that (except for very small samples) the standard deviation
of the error is roughly proportional to n−0.5, or 1/

√
n, where

n is the sample size. For these particular parameter values,
slip is consistently inferred most accurately, learning rate is
inferred least accurately, and guess and prior are between
the two and are similar.

4.4 Interaction between sample size and pa-
rameters

In our final experiment, as described in section 3.4, we vary
both the learning rate and the sample size at the same time.
The standard deviation curves for the three sample sizes are
then plotted on the same plot, each divided by the 1/

√
n

factor, where n is the sample size, as shown in Figure 5.
The curves are nearly identical, and we find no evidence
of interaction between parameters and sample size, but we
can’t rule out interaction for other combinations of parame-
ter values. This also offers additional evidence for the 1/

√
n

trend from the previous section.

5. DISCUSSION
Because accuracy is good for parameter values near 0 and 1,
this implies that for large enough samples, boundary effects
(in which the distribution of error is skewed because values
outside of the 0-1 range are not permitted) are not a serious
concern.

Interactions between parameters are complex, suggesting
that attempting to characterize error in each parameter in-
dependently is unlikely to yield good predictions of error.
Moreover, attempts to model these interactions analytically
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Figure 4: Accuracy of inferred parameters, based on
sample size (training set size), with fixed parame-
ters (prior=guess=0.5, learning=slip=0.67). This is
a log-log plot, and (once the y = 0.1 level is reached)
the lines each remain straight and have slope of
roughly -0.5. This suggests that the standard de-
viation of the error is roughly proportional to 1/

√
n,

where n is the sample size.
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Figure 5: Here we vary learning rate from 0 to 1,
and also vary sample size between the values 1000,
10000, and 100000. The resulting standard devia-
tions are divided by 1/

√
n to normalize for improve-

ment in error due to increased sample size. The
resulting curves are nearly identical; the curve for
100000 students appears noisier only because of a
lower number of samples (100 instead of 1000). We
find no evidence of interaction between sample size
and the learning rate.

may be challenging because they cannot be fit well by low-
degree polynomials. A more viable strategy is to form a
conservative estimate of error by conducting a grid search
of parameter sets that are plausible in a given scenario. On
the other hand, once the range of variances at a particular
(sufficiently large) sample size is characterized, Figure 4 and
Figure 5 show that altering the sample size has a uniform
and predictable effect on the error.

The main result that standard deviation is proportional to
1/
√
n suggests that, in order to decrease the margin of error

in the estimate of a parameter by a factor of 2, an increase
in sample size by a factor of 4 is required. Additionally,
Figure 4 shows that achieving even a single valid significant
digit in the learning rate requires sample sizes of 1000 stu-
dents or more. This suggests that studies using BKT with
less than 1000 students should be considered carefully for
sampling error.

5.1 Confidence Intervals and Decreasing Train-
ing Time

As noted in Figure 1, provided that the sample size is large
enough, the distribution of samples is approximated well
by a normal distribution, and the standard deviations com-
puted in synthetic simulations such as the preceding ones
can be used to compute confidence intervals containing the
true generating parameters (e.g. 95% of possible values are
within two standard deviations). Parameters used in these
simulations can be set either by using domain knowledge,
and/or by conservatively selecting values that give poor ac-
curacy.

To use our results to decrease training time for a large data
set, one approach is to create many small samples (e.g. 100
of size 1000) by sampling uniformly randomly with replace-
ment from the full data set. By training on these, we can
estimate the variance of our estimates of each parameter at a
sample size of 1000. Then, given a desired level of accuracy
and a desired probability of achieving it, we can use 1/

√
n

to estimate the best final sample size. If the estimated sam-
ple size exceeds the data size, this suggests that more data
needs to be gathered.

6. IDENTIFIABILITY PROBLEM
Although we have in this work considered a particular gen-
erating parameter set to be the correct and desired param-
eters, BKT exhibits an Identifiability Problem [1] in which
there are an infinite family of four-parameter solutions that
make the same predictions. This creates the risk that a solu-
tion that appears to be far from the generating parameters
is actually very close to an equivalent parameter set (or an
equivalent solution is).

Van de Sande [9] more specifically characterized BKT (in
its HMM form) as a three-parameter system in which two
systems having the same slip, learning rate, and A value will
yield the same predictions, where A is given by

A = (1− slip− guess)(1− prior).

One way to address the issue is to perform both data gener-

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

120



ation and parameter search in this reduced three-parameter
system; this would be similar to our current approach, but
error in the A parameter is more difficult to interpret. In-
tuitively, we expect search in a lower-dimensional space to
give better accuracy with the same amount of data. How-
ever, Van de Sande also notes that the algorithm form of
BKT has no analytic solution, and so the degree to which
BKT is underdetermined may depend on the specific appli-
cation.

Beyond the underdetermined nature of BKT, there are also
information-theoretic bounds that limit the accuracy of in-
ferring parameters regardless of the system. In particular,
given a collection of at least k different parameter sets, and
student data that can only take on < k values, there is
no procedure that can reliably infer the generating param-
eters without error. As the size of the data continues to
decrease, the minimum possible error increases. Although
these bounds are general, they typically apply only to very
small data sets.

7. CONCLUSIONS AND FUTURE WORK
We’ve only explored a small part of the space of input pa-
rameters that can affect inferred parameter accuracy; the
possible interactions between parameters are complex and
not fully understood. It would also be useful to examine
different sizes of problem sets, scenarios where different stu-
dents complete different numbers of problems, models where
parameters such as learning rate and guess/slip are per prob-
lem, and models where priors are measured per student (as
in Pardos and Heffernan [4]).

Although it seems intuitive that insufficient sample size can
lead to poor parameter estimates with poor predictive power,
this deserves verification: it’s not clear which errors will
damage prediction and which are benign. An empirical syn-
thetic study that examines prediction accuracy could assess
this cheaply. Going a step further, it would be useful to
simulate an interactive tutoring system and assess a cost
function that penalizes the system for both incorrect assess-
ment of mastery, and for failing to assess mastery when it
is reached. By applying weights to these error types, the
simulation could represent the real-world cost of inaccurate
parameters in such a system.

Another important direction is extending our results to real-
world data. There are a few approaches. One is to use a
very large real-world data set and use its inferred param-
eters as the ground-truth generating parameters, then ex-
amine smaller subsets to determine whether parameters are
inferred less accurately. If the BKT model is appropriate,
we expect to observe similar relationships between sample
size and variance as with our synthetic data. This approach
can be compared to one experiment of Ritter [6] (Figure 4),
in which they took a large real data set and computed mean-
squared error using the best-fit parameters on subsets with
smaller number of students ranging from 5 to 500.

There are other approaches to real-world validity. One would
be a survey of prior BKT applications, to identify whether
there is a consistent relationship between sample size and
reported prediction accuracy. A third approach would be a
controlled experiment in which two groups of very different

sizes each use an ITS, the BKT is trained on the result-
ing data, and then the groups continue to use the ITS and
their learning performance is examined (note however that
asymmetric group sizes limit statistical power).

Finally, an analytical model that can explain some of our
empirical results—such as the skewed normal distribution
of inferred parameter values, the improvements in parame-
ter inference near 0 and 1 parameter values, or the 1/

√
n

relationship between sample size and standard deviation—
would be a valuable contribution.
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ABSTRACT 
This paper defines 5 key dimensions of student models:  whether 
and how they model time, skill, noise, latent traits, and multiple 
influences on student performance.  We use this framework to 
characterize and compare previous student models, analyze their 
relative accuracy, and propose novel models suggested by gaps in 
the multi-dimensional space.  To illustrate the generative power of 
this framework, we derive one such model, called HOT-DINA 
(Higher Order Temporal, Deterministic Input, Noisy-And) and 
evaluate it on synthetic and real data.  We show it predicts student 
performance better than previous methods, when, and why. 

Keywords 

Knowledge tracing, Item Response Theory, temporal models, 
higher order latent trait models, multiple subskills, DINA. 

1. Introduction 
Morphological analysis [1] is a general method for exploring a 
space of possible designs by identifying key attributes, specifying 
possible values for each attribute, and considering different 
combinations of choices for the attributes.  Structuring the space 
in this manner compares different designs in terms of which 
attribute values they share, and which ones differ.  Characterizing 
the space of existing designs in terms of these attributes exposes 
gaps in the space, suggesting novel combinations to explore. 

Some prior work on student modeling has used this approach to 
characterize spaces of possible knowledge tracing models.  
Knowledge tracing (KT) [2] generally has 4 or 5 parameters:  the 
probability slip of failing on a known skill; the probability guess 
of succeeding on an unknown skill; the probability knew of 
knowing a skill before practicing it; the transition probability 
learn from not knowing the skill to knowing it; and sometimes the 
transition probability forget from knowing the skill to not 
knowing it, usually assumed to be zero. 

Mostow et al. [3] defined a space of alternative parameterizations 
of a given KT model, based on whether they assigned each 
knowledge tracing parameter a single overall value, a distinct 
value for each individual student and/or skill, or different values 
for different categories of students and/or skills.  Thus the number 
of values to fit is 4 if using a single global value for each 
parameter, but with separate probabilities for each <student, skill> 
pair, the number of values to fit is 4 × # students × # skills.  This 
work ordered the space of possible parameterizations of a single 

model by the number of values to fit.  

Xu and Mostow [4] factored the space of different knowledge 
tracing models in terms of three attributes:  how to fit their 
parameters, how to predict students’ performance from their 
estimated knowledge, and how to update those estimates based on 
observed performance.  We will use this factoring in Section 3.2. 

Section 2 introduces the proposed framework.  Section 0 describes 
HOT-DINA, a novel knowledge tracing method that the 
framework inspired.  Sections 4 and 5 evaluate HOT-DINA on 
synthetic and real data, respectively.  Section 6 concludes. 

2. A Unified 5-Dimensional Framework 
We characterize student models in terms of these five dimensions: 

Temporal effect: skills time-invariant vs. time-varying. 
• Static, e.g. IRT [5] and PFA [6] 
• 2 or more fixed time points, e.g. at pre- and post-test  
• Dynamic, e.g. KT [2] 

Skill dimensionality:  single skill vs. multiple skills at a step. 
Credit assignment: how credit (or blame) is allocated among 
influences on the observed success (or failure) of a step.   Mostow 
et al. [3] define a space of KT parameterizations.  Corbett and 
Andersen [2] originally fit KT per skill. Pardos and Heffernan [7] 
individualized KT and fit parameters per student. Wang and 
Heffernan [8] simultaneously fit KT per student and per skill. In 
contrast, multiple-skills models require combination functions to 
assign credit or blame among the skills.  Product KT [9] assigns 
full responsibility to each skill and multiplies the estimates. 
Conjunctive KT [10] assigns fair credit or blame to skills and 
multiplies the estimates. Weakest KT [11] credits or blames the 
weakest skill and takes the minimum of the estimates. LR-DBN 
[12] apportions credit or blame and performs logistic regression 
over the estimates.  We summarize credit assignment methods as: 

• Contingency table 
o Per student 
o Per skill 
o Per <student, skill> 
o Per student + per skill 

• Binary or probabilistic 
o Conjunctive (min) 
o Independent (product) 
o Disjunctive (max) 

• Other 
o Compensatory (+) 
o Mixture (weighted average) 
o Logistic regression (sigmoid) 

Higher order:  treat static student properties as latent traits or not. 
We say IRT [5] models “higher order” effects because it estimates 
static student proficiencies independent of skill properties such as 
skill difficulty in 1PL (1 Parameter Logistic), skill discrimination 
in 2PL, and skill guess rate in 3PL. De la Torre [13] first 
combined IRT with static Cognitive Diagnosis Models such as 
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NIDA (Noisy Inputs, Deterministic And Gate) [14-16] and DINA 
(Deterministic Inputs, Noisy And Gate), and proposed higher 
order latent trait models (HO-NIDA and HO-DINA). Xu and 
Mostow [17] used IRT to estimate the probability of knowing a 
skill initially in a higher order knowledge tracing model (HO-KT).  
Noise: how to represent errors in model, or discrepancies between 
what a student knows versus does.  KT assumes students may 
guess a step correctly even though they don’t know its underlying 
skill(s), or slip at a step even though they know its skill(s). Such 
“noise” is also characterized in other models, including single-
skill KT variants such as PPS (Prior Per Student) [7] and SSM 
(Student Skill Model) [8], and IRT models such as 3PL. NIDO 

and DINO respectively add noise either before or after combining 
estimates of multiple skills.  We refer to these noise modeling 
methods as: 

• None 
• Slip/Guess 
• NIDO (noisy input, deterministic output) 
• DINO (deterministic input, noisy output)  

Table 1 summarizes student models in the proposed unified 5-
dimensional framework. Note that we only discuss known 
cognitive models (e.g. Q-matrix) in this paper, so we omit 
methods that discover unknown cognitive models [18, 19]. 

Table 1. A unified 5-dimensional framework for student models 

Student models Temporal 
effect 

Skill 
dimensionality 

Credit 
assignment 

Higher order 
effect Noise model 

IRT 1PL (Rasch model) [5] 
IRT 2PL (2 Parameter Logistic) [5] 

Static 

Single skill Per student + 
per skill Latent trait None 

IRT 3PL (3 Parameter Logistic) [5] Slip/Guess 
LLM (Linear Logistic Model) [16] 

Multiple skills 

Sigmoid 
No latent trait 

None LFA (Learning Factor Analysis) [20]  
PFA (Performance Factor Analysis) [6] 
NIDA [14-16] Product NIDO 
DINA [14-16] DINA 
LLTM (Linear Logistic Test Model) [21] Sigmoid 

Latent trait 
None 

HO-NIDA [13] Product NIDO 
HO-DINA [13] DINO 
KT [2] 

Dynamic 

Single skill 

Per skill 
No latent trait 

Slip/Guess 
PPS (Prior Per Student) [7] Per student 
SSM (Student Skill Model) [8] 

Per student + 
Per skill HO-KT [17] Latent trait 

DIR (Dynamic IRT 1PL) [22] None 
KT+NIDA [23] 

Multiple skills 

Product 

No latent trait 
NIDO Product KT [9] 

CKT [10] 
Weakest KT [11] Minimum 
KT+DINA [23] Product DINO LR-DBN [12] Sigmoid 
HOT-NIDA [Section 0] Product Latent trait NIDO 
HOT-DINA [Section 0] DINO 

Table 2. Comparative framework to train, predict and update multiple-skills models   

Student models Train Predict Update 

CKT 

Train skills separately. 
Assign each skill full 

responsibility. 

Multiply skill estimates. 
Update skills together. Bayes’ 
equations assign responsibility. 

Product KT 

Update skills separately, each with 
full responsibility. 

Weakest KT 
(Blame weakest, 

credit rest) Minimum of skill 
estimates. 

Weakest KT 
(Update weakest 

skill) Update only the weakest skill. HOT-NIDA 
HOT-DINA 
[Section 3.2] 

Train skills together. 
Assign each skill full 

responsibility. 
Multiply skill estimates. 

KT+NIDA/DINA Update skills together, each with 
full responsibility. 

LR-DBN Train skills together. Logistic 
regression assigns responsibility. 

Logistic regression on 
skill estimates. 

Update skills together. Logistic 
regression assigns responsibility. 
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Table 2 (adapted from [4]) expands Credit assignment in terms 
of how to train, predict and update skills, e.g. to assign full 
responsibility to every skill, blame the weakest skill and credit 
the rest, update only the weakest skill, or use logistic function. 

The tables suggest transformations of models along the 
dimensions in the framework. For example, Dynamic IRT [22] 
varies student proficiency by time, transforming static IRT to 
dynamic.  KT+NIDA/DINA [23] varies skill estimates by time, 
transforming static NIDA/DINA to dynamic. HO-
NIDA/DINA/KT adds latent traits, transforming 
NIDA/DINA/KT to higher order.  LLM [16] and LLTM [21] 
change the combination function, transforming conjunctive 
models to logistic models.  In Section 0 we generate a novel 
student model by transforming HO-KT to a multi-skill model. 

3. A Higher-Order Temporal Student Model 
to Trace Multiple Skills: HOT-DINA 
Xu and Mostow [17] extended the static IRT model into HO-KT 
(Higher Order Knowledge Tracing), which accounts for skill-
specific learning by using the static IRT model to estimate the 
probability Pr(knew) of knowing a skill before practicing it. By 
generalizing to steps that require conjunctions of multiple skills, 
we arrive at a combined model we call HOT-DINA (Higher 
Order Temporal, Deterministic Input, Noisy-And). Note we can 
transform it into HOT-NIDA simply by changing its noise type. 

3.1 HOT-DINA = IRT + KT + DINA 
Let {Y(0), Y(1) , …, Y(t), …} denote a sequential dataset recorded 
by an intelligent tutor system, where Ynj

(t) = 1 iff student n 
correctly performs a step that requires skill j at time t. KT is a 
Hidden Markov Model (HMM) that models a binary hidden 
state K(t) indicating if the student knows the skill at time t. The 
probability of knowing the skill is knew at time t = 0, and then 
changes based on the student’s observed performance on the 
skill, according to the standard KT parameters slip, guess, learn, 
and forget (usually set to zero). 

KT can fit these four parameters (taking forget = 0) for each 
<student, skill> pair, but the resulting large number of values to 
fit is likely to cause over-fitting. Thus, Corbett and Andersen [2] 
originally proposed to estimate knew per student, and learn, 
guess and slip per skill. IRT assumes a latent trait that represents 
a student’s underlying proficiency in all the skills. For example, 
the Two Parameters Logistic (2PL) IRT model assumes that the 
probability of a student’s correct response is a logistic function 
of a unidimensional student proficiency θ with two skill-specific 
parameters: discriminability a and difficulty b (see Equation 1). 

𝑃 𝑌   =   1   =     
1

1 + exp  (−1.7𝑎(𝜃 − 𝑏))
 

Equation 1. The logistic function of 2PL model 
The two skill parameters determine the shape of the IRT curve. 
As a student’s proficiency increases beyond the skill difficulty, 
the student’s chance of performing correctly surpasses 50%. The 
skill discriminability reflects how fast the logit (log odds) 
increase or decrease when the proficiency changes. Thus IRT 
fits parameters individually on each dimension, without losing 
the information from the other. HO-KT uses 2PL to estimate 
knew in KT, by fitting student specific proficiency θn, skill 
discriminability aj and skill difficulty bj. It then uses KT to trace 
each skill, by fitting skill-specific learnj, guessj and slipj. Thus, 
HO-KT models students’ initial overall knowledge before they 
practice any skills; then it updates its estimates of students’ 

knowledge of each individual skill by observing additional 
practice on the skill. It also models two attributes of the skills, 
difficulty and discriminability, which are assumed to be 
constants that do not change over time. 

To incorporate DINA into HO-KT, we still model a hidden 
binary state in each step to indicate whether a student knows the 
overall skill used in the step, denoted as ηnj

(t) for student n with 
skill j at time t.  However, we also model a hidden binary state 
αnk

(t) to indicate whether student n knows skill k at time t. Given 
a matrix Q = {Qjk}, indicating whether the overall skill j 
requires skill k, we conjoin the skills as follows: 

𝜂!"
!   =    (𝛼!"

! )!!"
!

!  !  !

 

Equation 2. Conjunction of skills in HOT-DINA 
This formula gives us the DINA (Deterministic Input, Noisy-
And gate) structure [15], with the conjunction as the “and” gate 
and guess and slip as the noise. Thus by combining HO-KT with 
DINA, we obtain the HOT-DINA higher order temporal model 
to trace multiple skills.  Figure 1 shows how the plate diagram 
for HOT-DINA integrates IRT, KT, and DINA. 

 

 
Figure 1. Graphical representation of Higher-Order 

Temporal DINA (HOT-DINA) to trace multiple skills 
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Equation 3 shows the formula for using 2PL to estimate the 
probability knew of a student knowing a skill at time t = 0: 

𝑃 𝑘𝑛𝑒𝑤!"   =     𝑃 𝛼!"
(!)   =   1   

=   
1

1 + exp  (−1.7  𝑎!(𝜃! − 𝑏!))
 

Equation 3. 2PL to estimate knew in HOT-DINA 
Equation 4 shows the formula for tracing the skills with skill-
specific learn and zero forget:  

𝑃 𝛼!" !   =   1 𝛼!" !!!   =   0   =     𝑙𝑒𝑎𝑟𝑛! 

𝑃 𝛼!" !   =   0 𝛼!" !!!   =   1   =     𝑓𝑜𝑟𝑔𝑒𝑡!   =   0 

Equation 4. Knowledge tracing of skills in HOT-DINA 
Equation 5 shows the likelihood of a student’s performance 
given the hidden state η(t) and the skill-specific guess and slip: 

𝐿 𝑌!"
!   =   1|  𝜂!"

!   =   𝑔𝑢𝑒𝑠𝑠!
!!!!"

!
×(1 − 𝑠𝑙𝑖𝑝!)

!!"
!

 

𝐿 𝑌!"
!   =   0|  𝜂!"

!   =    (1 − 𝑔𝑢𝑒𝑠𝑠!)
!!!!"

!
×𝑠𝑙𝑖𝑝!

!!"
!

 

Equation 5. Likelihood in HOT-DINA 

3.2 How to Train, Predict, and Update 
Following the organization of Table 2, Section 3.2.1 details how 
HOT-DINA trains the skills together and assigns each skill full 
responsibility; Section 3.2.2 specifies how HOT-DINA predicts 
student performance by using a product of skill estimates; and 
Section 3.2.3 shows how HOT-DINA updates the weakest skill. 

3.2.1 Training the model with MCMC 
We estimate the parameters of HOT-DINA using Markov Chain 
Monte Carlo (MCMC) methods, which require that we specify 
the prior distributions and constraints for every parameter. We 
assume that student general proficiency θn is normally 
distributed with mean 0 and standard deviation 1. The skill 
discrimination an is positive and uniformly distributed between 0 
and 2.5, while the skill difficulty bn is also normally distributed 
with mean 0 and standard deviation 1. Learn has prior Beta 
(1,1), whereas guess and slip have uniform prior from 0 to 0.4.  

Thus, the priors on each parameter are: 

𝜃!    ~    𝑁𝑜𝑟𝑚𝑎𝑙(0,1) 

𝑏!      ~  𝑁𝑜𝑟𝑚𝑎𝑙(0, 1) 

𝑎!      ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 2.5) 

𝑙𝑒𝑎𝑟𝑛!      ~  𝐵𝑒𝑡𝑎(1, 1) 

𝑔𝑢𝑒𝑠𝑠!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

𝑠𝑙𝑖𝑝!     ~  𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 0.4) 

We use the following conditional distributions for each node:  

𝛼!"
! |𝜃!    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖({1 + exp −1.7  𝑎! 𝜃! − 𝑏! }!!  ) 

𝛼!"(!)|  𝛼!" !!!   =   0  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑙𝑒𝑎𝑟𝑛!) 

𝛼!"(!)|  𝛼!" !!!   =   1  ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1) 

𝑌!"
(!)|𝜂!" !   =   0    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑔𝑢𝑒𝑠𝑠!) 

𝑌!"
(!)|𝜂!" !   =   1    ~  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝑠𝑙𝑖𝑝!) 

Given η as a conjunction of α, the likelihood of Y given η, the 
conditional independence of α(0) given θ, and of α(t) given α(t-1), 
the posterior distribution of θ, a, b, α, η, learn (l), guess (g) and 
slip(s) given Y is 

𝑃 𝜽,𝒂,𝒃,𝜶,𝜼, 𝒍,𝒈, 𝒔 𝒀 ∝ 𝐿 𝒀 𝒈, 𝒔,𝜼,𝜶 𝑃 𝜶 ! 𝜽,𝒂,𝒃  

( 𝑃 𝜶 ! 𝜶 !!! , 𝒍 )𝑃 𝜽 𝑃 𝒂 𝑃 𝒃 𝑃 𝒍 𝑃 𝒈 𝑃(𝒔)
!

!  !  !
 

3.2.2 Predicting student performance 
For inference, we introduce uncertainty to ηnj, and rewrite the 
Equation 2 as follows:    

𝑃 𝜂!"
!   =   1   =     

1
exp −1.7𝑎! 𝜃! − 𝑏!

!!"!

!  !  !

 

𝑃 𝜂!"
!   =   1   =    (𝑃(𝛼!"

!   =   1))!!")!
!  !  !  for t = 1,2,3… 

Equation 6. Conjunction of skills in HOT-DINA inference 

Then we predict student performance by using Equation 7: 

𝑃 𝑌!"
!   =   1   =    1 − 𝑠𝑙𝑖𝑝! 𝑃 𝜂!"

!   =   1 + 𝑔𝑢𝑒𝑠𝑠!(1

− 𝑃 𝜂!"
!   =   1 ) 

Equation 7. Prediction in HOT-DINA 

3.2.3 Updating estimated skills 
We update the estimates of latent states η and α after observing 
actual student performance. The estimate of knowing a skill or a 
subskill should increase if the student performed correctly at the 
step. It is easy to update a skill by using Bayes’ rule, as shown in 
Equation 8. The posterior P(ηnj

(t) = 1|Ynj
(t) = 1) should be higher 

than P(ηnj
(t) = 1) if and only if (1-slipj) > guessj. 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   
𝑃 𝑌𝑛𝑗

𝑡   =   1 𝜂𝑛𝑗
𝑡   =   1)  𝑃 𝜂𝑛𝑗

𝑡   =   1

𝑃 𝑌𝑛𝑗
𝑡   =   1

 

  =     
(!!!"#$!)  ! !!"

!   !  !

(!!!"#$!)  ! !!"
!   !  ! !!"#$$! !!  ! !!"

!   !  !
      

Equation 8. Bayes’ rule to update η in HOT-DINA 
Although we could update HOT-DINA by assigning full 
responsibility to each skill, it would be interesting to update the 
weakest (or say hardest) skill since HOT-DINA fits the 
parameter ‘difficulty’ for each skill. Thus, we update the skill 
that is the hardest among all the required skills in a step: 

𝑃 𝜂!"
!   =   1 𝑌!"

!   =   1   

=   𝑃 𝛼!"!
!   =   1|𝑌!"

!   =   1 𝑃(𝛼!"
!   

!!!!
=   1) 

for 𝑘   =   argmax!:  !!"  !  ! 𝑏!. 

Equation 9. Update the hardest skill in HOT-DINA 
In short, we extend HO-KT to the HOT-DINA higher order 
temporal model, which traces multiple skills. We use the 
MCMC algorithm to estimate the parameters, and update the 
estimates of a student knowing a skill given observed student 
performance. How well does the HOT-DINA model work?  To 
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evaluate it, we performed a simulation study.  Section 4 now 
describes the study and reports its results. 

4. Simulation Study 
To study the behavior of HOT-DINA, we generated synthetic 
training data for it according to the priors and conditional 
distributions defined in Section 3.2.1.  Section 4.1 describes the 
synthetic data.  One purpose of this experiment was to test how 
accurately MCMC can recover the parameters of HOT-DINA, 
as Section 4.2 reports.  It is important not only to test how well a 
method works, but to analyze when and why.  Thus another 
purpose was to determine how many students and observations 
are needed to estimate the difficulty and discriminability of a 
given number of skills, as Section 4.3 explains. 

4.1 Synthetic Data 
We use the following procedure to generate the synthetic data, 
with all the variables as defined in Section 3.2: 

1. We chose K = 4 and J = 14, which results in a 14 × 4 Q 
matrix. The Q matrix, as shown below, indicates that we 
generate the skills by combining all the possible skills. 
𝐐!   

=   

1 0 0
0 1 0

0 1 1
0 1 0

1 0 0 0 1 1 1 0
0 1 1 0 1 0 1 1

0 0 1
0 0 0

0 0 1
1 0 0

0 1 0 1 1 1 0 1
1 0 1 1 0 1 1 1

 

 

2. We randomly generated θn from Normal (0,1) for n = 1,..,N. 

3. We chose a, b and l as shown in Table 3. 

Table 3. True value of skill-specific discrimination, difficulty 
and learning rate in synthetic data simulation 

k 1 2 3 4 
a 1.5 1.2 1.9 1.0 
b -0.95 1.42 -0.66 0.50 

learn 0.8 0.6 0.5 0.3 
 
4. We randomly generated g and 1-s from Unif(0,0.4) and 

Unif (0.6,1) respectively, as shown in Table 4. 

Table 4. True value of skill-specific guess and not slip 
parameters in synthetic data simulation 

j 1 2 3 4 5 6 7 
guess 0.35 0.40 0.13 0.15 0.29 0.39 0.10 
1-slip 0.67 0.66 0.67 0.90 0.65 0.60 0.61 

j 8 9 10 11 12 13 14 
guess 0.40 0.15 0.16 0.38 0.11 0.26 0.35 
1-slip 0.81 0.74 0.76 0.73 0.83 0.89 0.85 

5. We chose N = 100, T = 100, randomly picked one skill at 
each step, and simulated sequential data with size of 10,000. 

4.2 Results 
We used OpenBUGS [24] to implement the MCMC algorithm 
of HOT-DINA. We chose 5 chains starting at different initial 
points. We monitored the estimates of skill discrimination 𝒂 and 
difficulty 𝒃 to check their convergence, when all the chains 
appear to be overlapping each other. As a result, we ran the 
simulation for 10,000 iterations with a burn-in of 3000.  

Table 5 reports the sample means and their 95% confidence 
interval for parameter estimates 𝒂, 𝒃  and le𝒂rn respectively. 
We also report the Monte Carlo error (MC error) and sample 

standard deviation (s.d.) to assess the accuracy of the posterior 
estimates for each parameter. MC error, which is an estimate of 
the difference between the estimated posterior mean (i.e. the 
sample mean) and the true posterior mean, should be less than 
5% of the s.d. in order to obtain an accurate posterior estimate. 

 

Table 5. Estimates of skill-specific discrimination, difficulty, 
and learning rate (N = 100, T = 100, K = 4, J = 14) 

k a 𝒂 (95% C.I.) s.d. MC_error 
1 1.50 1.33 (0.36, 2.43) 0.65 0.03216 
2 1.20 1.23 (0.12, 2.43) 0.72 0.03561 
3 1.90 1.85 (0.22, 2.73) 0.64 0.03146 
4 1.00 0.98 (0.19, 2.12) 0.58 0.02870 
k b 𝒃 (95% C.I.) s.d. MC_error 
1 -0.95 -0.95 (-2.15, -0.04) 0.50 0.02339 
2 1.42 1.51(0.90, 2.21) 0.45 0.01936 
3 -0.66 -0.69 (-1.81, -0.63) 0.42 0.01990 
4 0.5 0.5 (0.05,1.18) 0.38 0.01691 
k learn 𝒍𝒆𝒂𝒓𝒏 (95% C.I.) s.d. MC_error 
1 0.8 0.81 (0.48, 0.99) 0.13 0.006599 
2 0.6 0.60 (0.52, 0.70) 0.05 0.002132 
3 0.5 0.57 (0.38, 0.84) 0.11 0.005432 
4 0.3 0.29 (0.25, 0.33) 0.02 7.79E-04 
     
We calculated Root Mean Squared Error (RMSE) of the 
estimates of the continuous variables𝒈𝒖𝒆𝒔𝒔 , 1- 𝒔𝒍!𝒑 , and   
𝜽. We report the accuracy of recovering the true value of the 
latent binary variable α in Table 6. 

Table 6. Estimation RMSE of skill-specific guess, not slip, 
and student specific proficiency; Prediction accuracy of a 

student mastering a subskill (N = 100, T = 100, K = 4, J = 14) 

 𝒈𝒖𝒆𝒔𝒔  1-𝒔𝒍!𝒑 𝜽 
RMSE 0.0103 0.0196 0.9183 
 𝜶 
Accuracy 99.38% 

    
From the results, we can see that the MCMC algorithm 
accurately recovered the parameters we used in generating the 
synthetic data for HOT-DINA. In addition to seeing how 
accurately it can estimate the parameters, we are also interested 
in finding out how many observations would be sufficient for 
the training algorithm to recover the hidden variables. Therefore, 
we conducted the study we now describe in Section 4.3. 

4.3 Study Design 
HOT-DINA requires data from enough students to rate the 
difficulty and discriminability of each skill, and data on enough 
skills to estimate the proficiency of each student. So we fixed 
the number of skills at K = 4, and varied the number of students 
N or the number of steps observed from each student T, to 
discover how many observations would be sufficient to estimate 
the parameters. In particular, we evaluated each model on how 
accurately it estimated the latent binary state α¸ which indicates 
if a student masters a skill. We generated the data by using the 
same parameters as in Section 4.1. Besides the general HOT-
DINA model that accounts for multiple skills, we also studied 
the single-skill model by shrinking the number of skills J to 
equal K, and set Q as an identity matrix. Thus we specified the 
HOT-DINA model to be a HO-KT model alternatively.  

We increased N, the number of students, from 10 to 1000, and 
T, the number of observations per student, from 5 to 100. Table 
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7 and Table 8 respectively show the accuracy of estimating the 
latent state α in HO-KT and HOT-DINA. Both tables show a 
trend of increasing accuracy when N or T increases (though at 
the cost of longer training time, roughly O(N2×T)). 

Table 7. Accuracy of estimating the latent binary states α 
with different N and T (K = J = 4) 

T 
N 

5 10 20 50 100 

10 71.01% 80.81% 83.01% 93.11% 96.16% 

20 72.32% 82.74% 86.52% 94.06% 97.33% 

50 73.58% 83.79% 87.34% 95.27% 98.90% 

100 77.55% 84.43% 88.08% 95.81% 99.41% 

200 76.52% 84.02% 89.48%  97.26% NA  

500 78.13% 84.34% 92.50% NA  NA  

1000 80.10% 84.59%  NA NA  NA  
 
Due to the lack of sampling ability of OpenBUGS for high 
dimensional dynamic models, we have no available scores to 
show for N×T bigger than 10,000. We can see that the multiple 
skill model predicts better than the single-skill model because 
the average number of observations per skill in the former one is 
larger than the latter. As observed in both tables, it is more 
efficient to increase T, than N, to get a better estimate. Both of 
the models reach the best prediction accuracy score (> 99%) 
when N = 100 and T = 100. In order to obtain an accuracy > 
90% for K = 4 skills, the least amount of data we need for HO-
KT is N = 10 with T ≈ 50 observations as shown in Table 7, for 
HOT-DINA is N = 10 with T > 20 observations, as shown in 
Table 8. 

 
Table 8. Accuracy of estimating the latent binary states α 

with different N and T (K = 4, J = 14) 

T 
N 

5 10 20 50 100 

10 72.07% 75.57% 91.14% 96.90% 98.10% 

20 74.32% 83.60% 91.56% 97.46% 98.53% 

50 76.55% 84.71% 92.62% 97.52% 98.98% 

100 77.80% 86.82% 93.83% 97.67% 99.82% 

200 79.92% 88.78% 94.26% 99.41%  NA 

500 82.15% 89.95% 98.61%  NA  NA 

1000 83.58% 92.34%  NA  NA  NA 
 
Next we apply the proposed model to real data logged by an 
algebra tutor. We evaluate the model fit and compare it against 
two baselines. 

5. Evaluation on Real Data 
We apply HOT-DINA to a real dataset from the Algebra 
Cognitive Tutor® [25]. Because of limited time, we chose a 
subset of the data, by crossing out the “isolated” algebra tutor 
steps. An “isolated” step here means a step that requires one 
skill all its own. We grouped the remaining steps that require the 
same multiple skills into one skill, resulting in J = 15 distinct 
skills that require K = 12 subskills.  Following the study design 

in Section 4.3, we randomly chose N = 50 students with T = 100 
in order to obtain enough data for the MCMC estimation.  

Table 9. Data split of the Algebra Tutor data: training on I 
and IV, and testing on II and III  

 Skill group A Skill group B 
Student group A I II 
Student group B III IV 

We split the 50 students into two groups of 25, and split the 15 
skills into two groups of 8 and 7. As shown in Table 9, we 
combine data from I (student-group-A practicing on skill-group-
A) and IV (student-group-B practicing on skill-group-B) to 
obtain the training data. Accordingly, we combined the data 
from II and III to obtain the test data. As a benefit of the data 
split, we are able to test the models on unseen students for the 
same group of skills, and also test on the unseen skills for the 
same group of students. 

We compared HOT-DINA with the conjunctive minimum KT 
model [11] since it showed the best prediction accuracy among 
all the previous KT based methods [4]. It fits KT parameters by 
blaming each skill that is required at a step, predicts student’s 
performance by the weakest skill, and updates only the weakest 
skill. Accordingly, we updated the most difficult skill in HOT-
DINA as discussed in Section 3.2.3. As two baseline models, we 
fit per-skill KT and per-student KT. Comparing HOT-DINA 
with these two baselines also allows us to discuss some more 
interesting research questions later in this section.  

Table 10 and Table 11 respectively show the models’ prediction 
accuracy and log-likelihood on the test data. We report the 
majority class because of the unbalanced data. HOT-DINA beat 
the two baselines in predicting the student performance, and also 
obtained the maximum log-likelihood on the test data. The per-
student KT model obtained the worst scores on both measures. It 
predicted student performance almost as poorly as majority class 
because it misclassified almost all the data in the minority class. 

Table 10. Comparison of prediction accuracy on real test 
data 

 Overall 
Accuracy 

Accuracy on 
Correct Steps 

Accuracy on 
Incorrect Steps 

HOT-DINA 82.48% 96.63% 27.27% 
Per-skill KT  80.87% 94.02% 29.60% 
Per-student KT 79.63% 99.74% 1.20% 
Majority class 79.60% 100.00% 0.00% 

 
Table 11. Comparison of log-likelihood on real test data 

 Log-likelihood 
HOT-DINA -2021.04 
Per-skill KT  -2075.67 
Per-student KT  -2464.74 

     
We are also interested in three other hypotheses comparing 
HOT-DINA with KT. We describe them, test them, and show 
the results as follows. 

1. HOT-DINA should predict early steps more accurately than 
KT since its estimate of knew reflects both skill difficulty 
and student proficiency, not just one or the other.  In fact 
HOT-DINA beat KT throughout, as Figure 2 shows. 
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Figure 2. Accuracy on student’s 1st, 2nd, 3rd, … test steps 
2. HOT-DINA should beat KT on sparsely trained skills 

thanks to student proficiency estimates based on other 
skills.  As Figure 3 shows, HOT-DINA tied or beat KT 
throughout. 

Figure 3. Skills sorted by amount of training data 
3. HOT-DINA should beat KT on sparsely trained students 

thanks to skill difficulty and discriminability estimates 
based on other students.  As Figure 4 shows, HOT-DINA 
beat KT throughout. 

 
Figure 4. Students sorted by amount of training data 

Thus, HOT-DINA outperformed the two baselines in model fit. 
It also beat them as specified by the three hypotheses above. 

6. Contributions, limitations, future work 
In this paper we make several contributions.  We defined a 5-
dimensional framework for student models.  We showed how 
numerous student models fit into it.  We described the new 
combination of IRT, KT, and DINA it suggests in the form of 

HOT-DINA. We specified how to train HOT-DINA by using 
MCMC, how to test it by predicting student performance, and 
how to update estimated skills based on observed performance.   

HOT-DINA uses IRT to estimate knew based on student 
proficiency and skill difficulty.  Thus it does not need training 
data on every <student, skill> pair, since it can estimate student 
proficiency based on other skills, and skill difficulty and 
discriminability based on other students.  Likewise, it should 
estimate knew more accurately than KT for skills and students 
with sparse training data.  HOT-DINA uses KT to model 
learning over time, and DINA to model combination of multiple 
skills underlying observed steps (unlike conventional KT and 
with fewer parameters than CKT [10] or LR-DBN [12]).   

Tracing multiple skills underlying an observed step requires 
allocating responsibility among them for its success or failure.  
DINA simply conjoins them, a common method but inferior to 
others.  Future work includes using the best known method [4], 
which we didn’t use here because the logistic regression it 
performs is non-trivial to integrate with MCMC. 

We evaluated HOT-DINA on synthetic and real data, not only 
showing that it predicts student performance better than previous 
methods, but analyzing when and why. 

We reported a simulation study to test if training could recover 
model parameters, and to determine the amount of data needed. 
HOT-DINA requires data on enough students and skills to 
estimate their proficiency and difficulty, respectively.  We 
explored how its accuracy varies with the number of test steps 
and the amount of training data per student and per skill.  These 
analyses were correlational, based on variations that happened to 
occur in the training data.  Future work should invest in the 
computation required to vary the amount of training data to 
establish its true causal effect on accuracy. 

Evaluation on real data from an algebra tutor showed that HOT-
DINA achieved higher predictive accuracy and log likelihood 
than KT with parameters fit per student or per skill.  This 
evaluation was limited to a single data set and two baselines (not 
counting majority class).  Future work should compare HOT-
DINA to other methods – notably the Student Skill model [8], 
which is similar in spirit – and on data from other tutors. 

We assumed that student proficiency is one-dimensional.  Future 
work can test if k dimensions capture enough additional variance 
to make it worthwhile to fit k times as many parameters. 

Finally, our choice of 5 dimensions is useful but limiting.  
Additional dimensions may provide useful finer-grained insights 
into the models covered by the current framework, and expand it 
to encompass other types of student models, e.g. where the 
cognitive model is unknown and must be discovered [18, 19]. 

ACKNOWLEDGMENTS 
This work was supported in part by the National Science 
Foundation through Grants 1124240 and 1121873 to Carnegie 
Mellon University. The opinions expressed are those of the 
authors and do not necessarily represent the views of the 
National Science Foundation or U.S. government.  We thank 
Ken Koedinger for his algebra tutor data. 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

128



REFERENCES 
[1]  Zwicky, F. Discovery, Invention, Research - Through the 
Morphological Approach. 1969, Toronto: The Macmillian 
Company. 

[2]  Corbett, A. and J. Anderson. Knowledge tracing:  Modeling 
the acquisition of procedural knowledge. User modeling and 
user-adapted interaction, 1995. 4: p. 253-278. 

[3]  Mostow, J., Y. Xu, and M. Munna. Desperately Seeking 
Subscripts:  Towards Automated Model Parameterization. 
Proceedings of the 4th International Conference on Educational 
Data Mining, 283-287. 2011. Eindhoven, Netherlands. 

[4]  Xu, Y. and J. Mostow. Comparison of methods to trace 
multiple subskills:  Is LR-DBN best?  [Best Student Paper 
Award]. Proceedings of the Fifth International Conference on 
Educational Data Mining, 41-48. 2012. Chania, Crete, Greece. 

[5]  Hambleton, R.K., H. Swaminathan, and H.J. Rogers. 
Fundamentals of Item Response Theory. Measurement Methods 
for the Social Science. 1991, Newbury Park, CA: Sage Press. 

[6]  Pavlik Jr., P.I., H. Cen, and K.R. Koedinger. Performance 
factors analysis - a new alternative to knowledge tracing. 
Proceedings of the 14th International Conference on Artificial 
Intelligence in Education (AIED09), 531-538. 2009. 

[7]  Pardos, Z. and N. Heffernan. Modeling individualization in 
a Bayesian networks implementation of knowledge tracing. 
Proceedings of the 18th International Conference on User 
Modeling, Adaptation and Personalization, 255-266. 2010. Big 
Island, Hawaii. 

[8]  Wang, Y. and N.T. Heffernan. The student skill model. 
Intelligent Tutoring Systems - 11th International Conference, 
399-404. 2012. Chania, Crete, Greece. Springer. 

[9]  Cen, H., K.R. Koedinger, and B. Junker. Comparing Two 
IRT Models for Conjunctive Skills. Ninth International 
Conference on Intelligent Tutoring Systems, 796-798. 2008. 
Montreal. 

[10]  Koedinger, K.R., P.I. Pavlik, J. Stamper, T. Nixon, and S. 
Ritter. Avoiding problem selection thrashing with conjunctive 
knowledge tracing. In Proceedings of the 4th International 
Conference on Educational Data Mining. 2011: Eindhoven, NL, 
p. 91-100. 

[11]  Gong, Y., J.E. Beck, and N.T. Heffernan. Comparing 
knowledge tracing and performance factor analysis by using 
multiple model fitting procedures. Proceedings of the 10th 
International Conference on Intelligent Tutoring Systems, 35-44. 
2010. Pittsburgh, PA. Springer Berlin / Heidelberg. 

[12]  Xu, Y. and J. Mostow. Using logistic regression to trace 
multiple subskills in a dynamic Bayes net. Proceedings of the 
4th International Conference on Educational Data Mining, 241-
245. 2011. Eindhoven, Netherlands. 

[13]  de la Torre, J. and J.A. Douglas. Higher-order latent trait 
models for cognitive diagnosis. Psychometrika 2004. 69(3): p. 
333-353. 

[14]  Junker, B. and K. Sijtsma. Cognitive assessment models 
with few assumptions, and connections with nonparametric item 
response theory. Applied Psychological Measurement, 2001. 
25(3): p. 258-272. 

[15]  de la Torre, J. DINA Model and Parameter Estimation: A 
Didactic Journal of Educational and Behavioral Statistics, 2009. 
34(1): p. 115-130. 

[16]  Maris, E. Estimating multiple classification latent class 
models. Psychometrika, 1999. 64(2): p. 197–212. 

[17]  Xu, Y. and J. Mostow. Using item response theory to 
refine knowledge tracing. In Proceedings of the 6th 
International Conference on Educational Data Mining, S.K. 
D’Mello, R.A. Calvo, and A. Olney, Editors. 2013, International 
Educational Data Mining Society: Memphis, TN, p. 356-357. 

[18]  González-Brenes, J.P. and J. Mostow. What and when do 
students learn?  Fully data-driven joint estimation of cognitive 
and student models. In Proceedings of the 6th International 
Conference on Educational Data Mining, S.K. D’Mello, R.A. 
Calvo, and A. Olney, Editors. 2013, International Educational 
Data Mining Society: Memphis, TN, p. 236-239. 

[19]  González-Brenes, J.P. and J. Mostow. Dynamic cognitive 
tracing: towards unified discovery of student and cognitive 
models. Proceedings of the Fifth International Conference on 
Educational Data Mining 2012. Chania, Crete, Greece. 

[20]  Cen, H., K. Koedinger, and B. Junker. Learning factors 
analysis – a general method for cognitive model evaluation and 
improvement. Proceedings of the 8th International Conference 
on Intelligent Tutoring Systems, 164-175. 2006. Jhongli, 
Taiwan. 

[21]  Fischer, G.H. The linear logistic test model. In G.H. 
Fischer and I.W. Molenaar, Editors, Rasch Models: 
Foundations, Recent Developments, and Applications, 131-155. 
Springer: New York, 1995. 

[22]  Wang, X., J.O. Berger, and D.S. Burdick. Bayesian 
analysis of dynamic item response models in educational testing. 
Annals of Applied Statistics, 2013. 7(1): p. 126-153. 

[23]  Studer, C. Incorporating Learning Over Time into the 
Cognitive Assessment Framework. Unpublished PhD, Carnegie 
Mellon University, Pittsburgh, PA, 2012. 

[24]  Lunn, D., D. Spiegelhalter, A. Thomas, and N. Best. The 
BUGS project: Evolution, critique and future directions. 
Statistics in Medicine, 2009. 28: p. 3049–306. 

[25]  Koedinger, K.R., R.S.J.d. Baker, K. Cunningham, A. 
Skogsholm, B. Leber, and J. Stamper. A data repository for the 
EDM community: the PSLC DataShop. In C. Romero, et al., 
Editors, Handbook of Educational Data Mining, 43-55. CRC 
Press: Boca Raton, FL, 2010. 

 
 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

129



The Sequence of Action Model: Leveraging the Sequence 

of Attempts and Hints 
Linglong Zhu 

Department of Computer Science 
Worcester Polytechnic Institute 

100 Institute Road, Worcester, MA 

lzhu@wpi.edu 

Yutao Wang 
Department of Computer Science 

Worcester Polytechnic Institute 
100 Institute Road, Worcester, MA 

yutaowang@wpi.edu 

Neil T. Heffernan 
Department of Computer Science 

Worcester Polytechnic Institute 
100 Institute Road, Worcester, MA 

nth@wpi.edu 

 

 

ABSTRACT 

Intelligent Tutoring Systems (ITS) have been proven to be 

efficient providing student assistance and assessing their 

performance when they do their homework. Researchers have 

analyzed how students’ knowledge grows and predict their 

performance from within intelligent tutoring systems.  Most of 

them focus on using correctness of the previous question or the 

number of hints and attempts students need to predict their future 

performance, but ignore the sequence of hints and attempts. In 

this research work, we build a Sequence of Actions (SOA) model 

taking advantage of the sequence of hints and attempts a student 

needed for the previous question to predict students’ performance. 

A two step modeling methodology is put forward in the work and 

is a combination of Tabling method and the Logistic Regression. 

We compared SOA with Knowledge Tracing (KT) and Assistance 

Model (AM) and combinations of SOA/AM and KT. The 

experimental results showed that the Sequence of Action model 

has reliably better predictive accuracy than KT and AM and its 

performance of prediction is improved after combining with KT.  
Keywords 

Knowledge Tracing, Educational Data Mining, Student Modeling, 

Sequence of Action, Assistance Model, Ensemble. 

1. INTRODUCTION 
One of the student modeling tasks is to trace the student’s 

knowledge by using student’s performance. Corbett and Anderson 

(1995) put forward the well-known Knowledge Tracing (KT) 

based on their observation that the students’ knowledge is not 

fixed, but is assumed to be increasing. KT model makes use of 

Bayesian network to model students’ learning process and 

predicate their performance.  

A variety of extensions of KT model are put forward in 

recent years. Baker, Corbett, and Aleven (2008) build a contextual 

guess and slip model based on KT that provides more accurate 

and reliable student modeling than KT. Pardos and Heffernan 

extends KT four parameters model to support individualization 

and skill specific parameters and get better prediction of students’ 

performance. Qiu and Qi et al. find that forgetting is a more likely 

cognitive explanation for the over prediction of KT when 

considering the time students take to  finish their tasks.  

Alternative methods to KT model have been developed. For 

example, in order to generate adaptive instructions for students, 

Pavlik Jr., Cen, and Koedinger (2009) put forward the 

Performance Factor Analysis (PFA) model that can make 

predictions for individual students with individual skills. Gong, 

Beck, and Heffernan (2010) compared KT with PFA using 

multiple model fitting procedures and showed that there are no 

real differences in predictive accuracy between these two models.  

However, little attention is paid to the data generated when 

students interact with computer tutors. Shih, Koedinger, and 

Scheines (2010) utilize Hidden Markov Model clustering to 

discover different strategies students used while working on a ITS 

and predict learning outcomes based on these strategies. Their 

work is based on a dataset that consists of a series of transactions 

and each transaction is a <Student, Step, Action, Duration> tuple. 

This model takes into account both students’ action, attempt or 

help request, and action duration. The experimental results of 

their Stepwise-HMM-Cluster model shows that persistent 

attempts lead to better performance than hint-scaffolding strategy. 

Some papers have shown the value of using the raw number of 

attempts and hints. In fact, the National Educational Technology 

Plan cited Feng, Heffernan, and Koedinger’s work (2006) and the 

User Modeling community gave it an award for best paper for 

showing that the raw number of hints and attempts is informative 

in predicting state test scores. Wang and Heffernan (2011) built 

an Assistance Model (AM) and generated a performance table 

based on students’ behavior of doing the previous question. 

Hawkins et al.(2013) extended AM by looking at students’ 

behavior for the two previous questions.  

These educational data mining models that utilize the 

number of assistance students request and the number of attempts 

they make to predict students’ performance have ignored the 

sequencing of students’ interaction with ITS. Consider a thought 

experiment. Suppose you know that Bob Smith asked for one of 

the three hints and makes one wrong answer before eventually 

getting the question correct. What if someone told you that Bob 

first made an attempt then had to ask for a hint compared to the 

first requesting a hint and then making a wrong attempt. Would 

this information (whether he started with an attempt or a hint) add 

value to your ability to predict whether Bob will get the next 

question correct? We suspected that a student who first makes an 

attempt tends to learn by himself and has higher probability to 

master the knowledge and answer the next same question correct.  

In our previous work, we showed a Sequence of Action 

(SOA) model that made use of information about the action 

sequence of attempts and hints for a student in previous question 

better predicted the correctness of a current question.. We 

reported experimental results of an improvement upon the KT 

model. However, we later found a mistake in that experiment. So 

this paper serves as a correction of the previous results and as a 

formal presentation of the SOA model to the community. We 

present the SOA model and compare it to the KT model and the 

Assistance model, as well as the combined models to see if 

knowing sequence of action information does improve upon a 
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standard Knowledge Tracing model, or even upon knowing 

number of hints and number of attempts alone. 

The raw data and experiment result is available online: 

https://sites.google.com/site/assistmentsdata/projects/zhu2014. 

1.1 The Tutoring System and Dataset 
The data we used originated from the ASSISTments platform,  an 

online tutoring system for K12 students that gives immediate 

feedback to teachers, students, and parents. The ASSISTments 

gives tutorial assistance if a student makes a wrong attempt or 

asks for help. Figure 1 shows an example of a hint, which is one 

type of assistance. Other types of assistance include scaffolding 

questions and context-sensitive feedback messages, known as 

“buggy messages.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 shows a student who asked for a hint (shown in 

yellow and also indicated by the button says “Show hint 2 of 4”), 

but it also shows that the student typed in eight and got feedback 

that this was wrong. Though Figure 1 shows the number of hints 

and attempts, interestingly you cannot tell whether the student 

asked a hint first or made an attempt first. This paper’s argument 

is that information is very important. 

ASSISTments records all the details about how a student 

does his or her homework and tests from which scientists can get 

valuable material to investigate students’ behavior and their 

learning process. These records include the start time and end 

time of a problem, the time interval between an attempt, if he or 

she asks for a hint, the number of attempts a student makes, the 

number of hints a student asks for, as well as the answer and result 

for each attempt a student makes. 

Figure 2 shows an example of a detailed sequence of action 

recorded by the system. The row in blue means that the answer is 

correct, the row in red means that the answer is wrong, and the 

row in orange means the student asked for a hint. We can see that 

this student answered correctly on his first attempt for the first 

problem PRAQM5U. The sequence of action is ‘a’ (‘a’ represents 

an attempt). For the second problem PRAQM2W, he asked three 

hints continuously before making the correct answer. The 

sequence of action is ‘hhha’ (‘h’ represents a hint). For the third 

problem PRAQM2F, he alternatively asked for hints and made 

attempts, and the sequence of action is ‘hahaha’. For the last 

problem PRAQZPN, he made one wrong attempt before making 

the correct answer and its action sequencing is ‘aa.’ 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

We used data from one Mastery Learning class. Mastery 

Learning is a strategy that requires students to continually work 

on a problem set until they have achieved a preset criterion 

(typically three consecutive correct answers). Questions in each 

problem set are generated randomly from several templates and 

there is no problem-selection algorithm used to choose the next 

question.  

Sixty-six 12-14 year-old, 8th grade students participated in 

these classes and generated 34,973 problem logs. We only used 

data from a problem set for a given student if they had reached the 

mastery criterion. This data was collected in a suburban middle 

school in central Massachusetts. Students worked on these 

problems in a special “math lab” period, which was held in 

addition to their normal math class. 

If a problem only has one hint, the hint is the answer of the 

problem and is called the bottom hint. After a student asks for a 

bottom hint, any other attempt is meaningless because he or she 

already knows the answer. In the experiment, we only consider 

the problem logs that have at least two hints. And the answer will 

be marked as incorrect if students ask for a hint or the first attempt 

is incorrect. Moreover, we excluded such problem logs where: 1) 

students quit the system immediately after they saw the question 

and the action logs were blank ,or 2) after they requested hints, 

but did not make any attempts and no answer was recorded.  

Here we only consider the question pairs that have the same 

skill and skills having only one question were removed because 

they do not help in predicting. Questions of the same skills were 

sorted by start time in ASSISTments. We split equally 66 students 

into six groups, 11 students in each, to run 6-fold cross validation. 

We trained the SOA model and the KT model on the data from 

five of the groups and then computed the prediction accuracy on 

the sixth group. We did this for all six groups.   

2. INDIVIDUAL MODELS 

2.1 KT 
Knowledge Tracing (KT) is one of the most common methods 

that are used to model the process of student’s knowledge gaining 

and to predict students’ performance. The KT models is an 

Hidden Markov Model (HMM) with a hidden node (student 

Figure 1. Assistance in ASSISTments. Which is first: 

asking for a hint or make an attempt? 

 

. 

 

 

Figure 2. Students’ action records in ASSISTments 

 

. 
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knowledge node) and an observed node (student performance 

node). It assumes that a skill has four parameters; two knowledge 

parameters and two performance parameters. The two knowledge 

parameters are: prior and learn. The prior knowledge parameter is 

the probability that a particular skill was known by the student 

before interacting with the tutor. The learn parameter is the 

probability that a student transits from the unlearned state to the 

learned state after each learning opportunity, i.e., after see a 

question. The two performance parameters are: guess and slip. 

Guess is the probability that a student will guess the answer 

correctly even if the skill associated with the question is in the 

unlearned state. Slip is the probability that a student will answer 

incorrectly even if he or she has mastered the skill for that 

question.  

The goal of KT is to estimate the student knowledge from his 

or her observed actions. At each successive opportunity to apply a 

skill, KT updates its estimated probability that the student knows 

the skill, based on the skill-specific learning and performance 

parameters and the observed student performance (evidence). It is 

able to capture the temporal nature of data produced where 

student knowledge is changing over time. KT provides both the 

ability to predict future student response values, as well as 

providing the different states of student knowledge. For this 

reason, KT provides insight that makes it useful beyond the scope 

of simple response prediction.  

2.2 Assistance Model 
Motivated by the intuition that students who need more assistance 

have lower probability possessing the knowledge, Wang and 

Heffernan (2011) built a purely data driven “Assistance” model to 

discover the relationship between assistance information and 

students’ knowledge.  

A parameter table was built in which rows represent the 

number of attempts a student required in the previous question 

and columns represent the number of hints the student asked for. 

Each cell contains the probability that the student will answer the 

current question correctly. The attempts are separated into three 

bins: one attempt, small number of attempts (2-5 times), and large 

numbers of attempts (more than five attempts). Hints are separated 

into four bins: no hint, small number of hints (1, 50%], large 

number of hints [50%, 100%), and all hints where students for all 

hints. Table 1 shows the parameter table gained from our dataset. 

As with Wang and Heffernan’s experimental results, the 

parameter table confirms that students requiring more assistance 

to solve a problem probably have less corresponding knowledge.  

Table 1. Assistance Model parameter table, average across six 

folds   

 
attempt= 1 0<attempt<6 attempt>=6 

hint_percent = 0 0.8410 0.7963 0.7808 

0<hint_percent<=.5 0.6286 0.6933 0.6741 

.5<hint_percent<1 0.4494 0.6290 0.6522 

hint_percent = 1 0.4293 0.6147 0.6218 

 

2.3 The Sequence of Action Model 
The Sequence of Action (SOA) model we present takes advantage 

of the order information about how students make attempts and 

ask for hints. Different students have different sequences of 

actions. Some students answered correctly only after one attempt 

and some students kept trying many times. Some students asked 

for hints and made attempts alternatively and we believe they 

were learning by themselves. In the data, there are 217 different 

sequences of actions. Intuitively, students’ actions reflect their 

study attitude and this determines their performance. Based on the 

assumption that students who make more attempts tend to master 

knowledge better than students who ask for more hints, we 

divided them into five categories or bins: (1) One Attempt: the 

student correctly answered the question after one attempt; (2) All 

Attempts: the student made many attempts before finally getting 

the question correct; (3) All Hints: the student only asked for hints 

without any attempts at all; (4) Alternative, Attempt First: the 

students asked for hints and made attempts alternatively and made 

an attempt at first; and (5) Alternative, Hint First: the students 

asked for hint and made attempts alternatively and asked for a hint 

first. Table 2 shows the division and some examples of the action 

sequences in each category.  

Table 2. Sequence of Action Category and Examples 

Sequence of Action Category/ 

Bin Name 
Examples 

One Attempt/Bin ‘a’ a 

All Attempts/Bin ‘a+’ aa, aaa, …, aaaaaaaaaaaa 

All Hints/Bin ‘h+’ ha, hha,…, hhhhhhha 

Alternative, Attempt First/Bin ‘a-

mix’ 
aha, aahaaha,…, aahhhhaaa 

Alternative, Hint First/Bin ‘h-

mix’ 
haa, haha,…, hhhhaha 

Notice that each sequence ends with an attempt because in 

ASSISTments, a student cannot continue to next question unless 

he or she fills in the right answer of the current problem. In Table 

2, ‘a’ stands for answer and ‘h’ stands for hint. An action 

sequence “ahha” means that a student makes an attempt and then 

asks for two hints before he or she types the correct answer and 

moves on to the next question.  

2.3.1 Sequence of Action Tabling 
After dividing all of sequence of actions into five categories, we 

use a Tabling method, which gets the next percent correct directly 

from the training data. For each fold, one table is generated by the 

tabling method by counting the number of total appearance and 

the number of next correct of each bin. After counting, a next 

correct percent is calculated by dividing Next Correct Count by 

Total Count of Bin.  

Table 2. Next correct percent table of training group of fold 1 

Bin 

Name 

Total 

Count 

Next Correct 

Count 

Next Correct 

Percent 

 ‘a’ 22964 19157 0.834 

‘a+’ 3538 2690 0.760 

 ‘h+’ 335 172 0.513 

 ‘a-mix’ 2030 1318 0.649 

‘h-mix’ 72 37 0.513 

Table 3 shows the table computed for fold 1. Tables for other 

folds are similar. From Table 3, we can see that the percent of 

next-question-correct is highest among students only using one 

attempt since they master the skill the best. They can correctly 
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answer the next question with the same skill. For students in ‘a+’ 

bin, they are more self-learning oriented, they try to learn the skill 

by making attempts over and over again. So they get the second 

highest next-question-correct percent. But for students in the ‘h+’ 

category, they do the homework only relying on the hints. It is 

reasonable that they don’t master the skill well or they don’t even 

want to learn, so their next-question-correct percent is very low. 

The alternative sequence of action reflects students’ learning 

process. Intuitively, these students have positive attitudes for 

study. They want to get some information from the hint based on 

which they try to solve the next problem. But the results for the 

two alternative categories are very interesting. Though students in 

these two categories alternatively ask for hints and make attempts, 

the first action somewhat decides their learning altitude and final 

results. For students who make an attempt first, if they get the 

question wrong, they try to learn it by asking for hints. But for 

students who ask for a hint first, they seem to have less confidence 

in their knowledge. Although they also make some attempts, from 

the statistics of action sequence, they tend to ask for more hints 

than making attempts. The shortage of knowledge or the negative 

study attitude makes their performance as bad as the students 

asking exclusively for hints first.  

2.3.2 Logistic Regression 
In this section, we are going to introduce the second part of the 

SOA model that makes use of a logistic regression model and 

information we get from the first part of SOA, i.e., tabling 

method. 

Even though the next correct percentage we get from the 

tabling method indicates that the action of sequence can reflect 

the trend of next correct percentage, the table is very rough and is 

not intelligent enough to be used to predict students’ performance. 

However, we can use it as a feature in our logistic regression 

prediction model.  

The dependent variable Next Correct of the logistic 

regression model has two states: correct and incorrect. The 

independent variables are Skill_ID and Credit (the next correct 

percentage generated by the tabling method). Skill_ID was treated 

as a categorical factor, while Credit was treated as a continuous 

factor. There are totally 51 skills of the data. As mentioned in 

before, there are six folds and each fold has their own next correct 

percentage table.  

We used Binary Logistic Regression in SPSS to train the 

model. Logistic coefficients are fitted through Expectation 

Maximization of at most 20 steps. Parts of coefficients of the first 

fold are shown in Table 4. 

Table 4. Coefficients of logistic regression model of fold 1 

Parameters Value 

β0(Intercept) -1.679 

β1,0(skill_id 16) 0.322 

β1,1(skill_id 17) -0.007 

β1,2(skill_id 24) 20.168 

……. …… 

β1,50(skill_id 371) 0.470 

β2(Credit) 3.286 

3. MODEL COMBINATION 
Since the SOA model uses completely different information from 

KT, we expected a potential improvement from combing SOA 

results with the predictions from KT. We combined models using 

two different methods. 

The first method was simply average the SOA and KT 

predictions. Presumably, if a group of models have high 

accuracies and uncorrelated errors, we can get lower error by 

averaging them. To compare with the combination of AM model 

and KT model, we also computed the average of these two 

models. 

The second method was a linear regression model with 

student performance as the dependent variable. This method takes 

into account the fact that different models’ predictions may have 

different weight in the final prediction. If one of the models is 

more useful than the other, this method will allow us to learn 

which model should be weighted more heavily. SPSS was used to 

train linear regression models. The function for KT and AM is:  

-0.322+0.639*AM_prediction+0.769*KT_prediction; 

The function for KT and SOA is: 

-0. 004+0. 687*SOA_prediction+0. 321*KT_prediction; 

We did not combine AM and SOA, because both of them use 

information about hints and attempts. From the functions, we can 

tell that SOA weights heavier than KT, which indicates that SOA  

is  more  useful  than  KT in making a prediction. 

4. EXPERIMENTAL RESULTS 

4.1 Compare AM, SOA and KT 
To evaluate how well each of the individual models (SOA, 

AM, KT) and the combined models fit the data, we used three 

metrics to examine the predictive performance on the unseen test 

set: Mean Absolute Error (MAE), Root Mean Squared Error 

(RMSE) and Area Under ROC Curve (AUC). Lower values for 

MAE and RMSE and higher values for AUC indicate better 

model fit.  

Table 5. Prediction accuracy of KT, SOA, AM and Ensemble 

 MAE RMSE AUC 

AM 0.3007 0.3844 0.5795 

SOA 0.2871 0.3767 0.6786 

KT 0.2939 0.3790 0.6735 

LR(AM, KT) 0.2874 0.3759 0.6824 

LR(SOA, KT) 0.2878 0.3762 0.6813 

AVG(SOA, 

KT) 
0.2876 0.3757 0.6836 

Table 5 shows values of the three metrics from a six-fold 

across validation, which are calculated by averaging 

corresponding numbers obtained from each validation. As with 

Wang and Heffernan’s results (Wang & Heffernan, 2011), the 

performance of linear regression combination of AM and KT, 

called as LR(AM, KT) is better than AM itself, which indicates 

information about the number of hints and attempts improves the 

prediction of KT model. Overall, the combination of any two 

models have higher prediction accuracy and this is especially true 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

133



that for the average ensemble of SOA and KT, called as 

AVG(SOA, KT), which has better accuracy than the other two 

combinations. Also, the linear regression of AM and KT has 

better prediction accuracy than linear regression combination of 

SOA and KT. However, from the two tailed paired t-test results 

shown in Table 6, the statistical difference between any two pairs 

of model combinations are not significant. 

To examine whether there is significant difference between 

these models, we performed a 2-tailed paired t-test. The p values 

are shown in Table 6. We observe that most of the differences 

between two models are reliable, except for when we compare 

some AM and KT combined models with SOA and KT combined 

models. Both SOA and AM use the information about students’ 

actions of hints and attempts. There might be a chance that SOA 

and LR(AM, KT) have some prediction overlap. 

Table 6. Reliability when compare KT, SOA, AM, and 

Ensemble 

 MAE RMSE AUC 

AM vs SOA 0.000 0.000 0.000 

AM vs KT 0.000 0.000 0.000 

AM vs LG(AM, KT) 0.000 0.000 0.000 

AM vs LR(SOA, KT) 0.000 0.000 0.000 

AM vs AVG(SOA, KT) 0.000 0.000 0.000 

SOA vs KT 0.000 0.000 0.037 

SOA vs LG(AM, KT) 0.298 0.030 0.083 

SOA vs LR(SOA, KT) 0.000 0.001 0.006 

SOA vs AVG(SOA, KT) 0.020 0.000 0.003 

KT vs LR(AM, KT) 0.000 0.000 0.000 

KT vs LR(SOA, KT) 0.000 0.000 0.000 

KT vs AVG(SOA, KT) 0.000 0.000 0.000 

LR(AM, KT) vs LR(SOA, KT) 0.265 0.296 0.469 

LR(AM, KT) vs AVG(SOA, 

KT) 
0.271 0.138 0.079 

LR(SOA, KT)vs AVG(SOA, 

KT) 
0.258 0.001 0.010 

 

4.2 Further Analysis for SOA and KT 
From the last section, we observed the best model is the 

AVG(SOA,KT) model. In order to better investigate this 

combination, we ran student level and skill level analysis. 

Tables 7 and 8 shows the student level result across 66 

students to account for the non-independence of their actions. 

Take MAE as an example, for each student; a MAE is calculated 

based on all data available for that student. Then an average value 

for MAE is computed based on MAE of all students. Table 8 

shows the t-test p value for each pair of these three models, where 

the remaining degrees of freedom on all the tests is 65. 

Table 7. Student Level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.2939 0.3790 0.6738 

SOA 0.2871 0.3767 0.6786 

AVG(KT, SOA) 0.2905 0.3765 0.6811 

Table 8. Student level reliability of difference of KT, SOA and 

Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0000 0.0551 

KT vs AVG 0.0000 0.0000 0.0000 

SOA vs AVG 0.0000 0.0698 0.0698 

Note that there is no significant difference of AUC between 

KT and SOA. We interpret these results by pointing out that 

RMSE and AUC are metrics that are optimized for measuring 

different things, and so this is quite possible.  

Table 9 and 10 shows the skill level result across all 51 

skills. From Table 9 we observe a very low AUC value for all the 

models, which indicates these models do not make a good 

classification at skill level. The t-test p value with remaining 

degrees of freedom 50 is shown in table 10. 

Table 9. Skill level accuracy of KT, SOA and Ensemble 

 MAE RMSE AUC 

KT 0.3064 0.3762 0.4675 

SOA 0.2942 0.3713 0.4769 

AVG(KT, SOA) 0.3003 0.3710 0.492 

Table 10. Skill Level reliability of difference of KT, SOA and 

Ensemble 

 MAE RMSE AUC 

KT vs SOA 0.0000 0.0136 0.3492 

KT vs AVG 0.0000 0.0002 0.0003 

SOA vs AVG 0.0000 0.3982 0.0059 

The student and skill level analysis generate similar 

conclusions, that SOA and ensemble outperform KT in all of the 

three metrics. When we compare the ensemble model with SOA 

alone, the result is not so clear. 

5. DISCUSSION AND FUTURE WORK 
In this paper, we put forward a Sequence Of Action model that 

makes use of sequence of students attempts to answer questions 

and asking for hints. The SOA model consists of two parts. First, 

the sequence of students’ actions are divided into five categories. 

A tabling method shows that students who only make attempts 

tend to answer the next question more correctly than students who 

only ask for hints. This could be caused by students who make 

more attempts are trying to figure problems out by themselves and 

it is an efficient way to master knowledge when  they are told the 

steps to answer these questions by asking for hints. Second, we 

built a logistic regression model with next question correct 

percentage as dependent variable and skill_id, credits of sequence 

of action bins as independent variables. 

We conducted six-fold cross validation experiments. The 

experimental result showed that SOA had reliably higher 

prediction accuracy than the Knowledge Tracing model and 

Assistance Model. The average combination of the SOA and KT 

had the highest prediction. In sum, the sequence of students’ 

actions provided important information in predicting students’ 

performance.  

This work is the beginning of utilizing the sequence of 

asking for hints and making attempts recorded by intelligent 
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tutoring systems to better predict student performance. There are 

many open spaces for us to explore. For example, the 

experimental data we used is from ASSISTments, does SOA 

model still makes a big difference if use data from other 

intelligent tutor systems? How much can the performance of SOA 

model be improved if combined with other efficient prediction 

model such as PFA (Pavlik et al., 2009)? What is the SOA 

model’s performance if we use a student action sequence of 

several previous questions when we train the model? How does 

SOA perform after individualization? These are some of the 

questions that still need to be explored. 

6. CONTRIBUTION 
Predicting student performance is an important part of the student 

modeling task in Intelligent Tutoring Systems.  A large portion of 

papers at EDM have focused on this. Many models and 

techniques have been used to model and investigate students’ 

performance. However, little attention been paid to the temporally 

sequential actions of student when interacting with the tutoring 

system.  To our knowledge we are the first to use the temporal 

sequencing of hints and attempts.  It turns out that by paying 

attention to this we can better predict student performance. In this 

paper, we introduce the Sequence of Action model which makes 

use of the click-stream data of the sequence of making attempts 

and asking for hints when students do their homework using an 

Intelligent Tutoring System. Students’ actions can be very 

different from each other, but we found there are some useful 

patterns. 

We can think of several ways to improve upon this.  First, 

our five bins that we put students into were somewhat arbitrary.  

There could be more bins or fewer.  If we use more bins, we might 

have very different predictions. The downside is that for some of 

these bins we might not have enough data points to reliably fit the 

parameters.  One way to make the model better might be to split 

the “All Hints” bin into one that has “Reached Bottom out Hint” 

and one that is “All hints excluding those that reached the bottom 

out.” We could also try to pay attention to features like response 

time between hints or the response time after a hint in making an 

attempt.   

According to our six-fold cross validation experiments and 

paired two-tailed t-test, both on student level and skill level, our 

Sequence of Action model had reliably higher prediction accuracy 

than KT and AM, the later uses the number of hints students ask 

for and the number of attempts students make. Furthermore, we 

combined SOA and KT using average and linear regression 

methods, and the ensemble model’s prediction performance was 

much better than either SOA or KT. We also compared 

combination of SOA and KT with combination of AM and KT. 

The experimental result show that SOA contributes  more useful 

information than AM alone, which indicates that the sequential 

information of action does convey more information about 

students’ learning than the statistics information of actions 

students make. 
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ABSTRACT 

Bayesian Knowledge Tracing (BKT) is a popular student model 

used extensively in educational research and in intelligent tutoring 

systems. Typically, a separate BKT model is fit per skill, but the 

accuracy of such models is dependent upon the skill model, or 

mapping between problems and skills. It could be the case that the 

skill model used is too coarse-grained, causing multiple skills to 

all be considered the same skill. Additionally, even if the skill 

model is appropriate, having problems that exercise the same skill 

but look different can have effects on student performance. There-

fore, this work introduces a student model based on BKT that 

takes into account the similarity between the problem the student 

is currently working on and the one they worked on just prior to 

it. By doing this, the model can capture the effect of problem 

similarity on performance, and moderately improve accuracy on 

skills with many dissimilar problems. 

Keywords 

Student modeling, Bayesian Knowledge Tracing, Problem Simi-

larity 

1. INTRODUCTION 
Bayesian Knowledge Tracing (BKT) [3] is a popular student 

model used both in research and in actual intelligent tutoring 

systems. As a model that infers student knowledge, BKT has 

helped researchers answer questions about the effectiveness of 

help within a tutor [1], the impact of “gaming the system” on 

learning [5], and the relationship between student knowledge and 

affect [9], among others. Additionally, it has been used in the 

Cognitive Tutors [6] to determine which questions should be 

presented to a student, and when a student no longer needs prac-

tice on a given skill. 

However, BKT models are dependent upon the underlying skill 

model of the system, as a separate BKT model is typically fit per 

skill. If a skill model is too coarse-grained or too fine-grained, it 

can make it more difficult for a BKT model to accurately infer 

student knowledge [8]. 

Additionally, even when a skill model is tagged at the appropriate 

level, seeing similar problems consecutively as opposed to seeing 

dissimilar problems may have effects on guessing and slipping, 

two important components of BKT models. For example, if a 

student does not understand the skill they are working on, seeing a 

certain type of question twice or more consecutively may improve 

their chances of “guessing” the answer using a suboptimal proce-

dure that would not work on other questions from the same skill. 

Whether the skill model is not at the appropriate level or seeing 

consecutive similar questions helps students succeed without fully 

learning a skill, it may be important to take problem similarity 

into account in student models. In this work, we introduce the 

Bayesian Knowledge Tracing – Same Template (BKT-ST) model, 

a modification of BKT that considers problem similarity. Specifi-

cally, using data from the ASSISTments system [4], the model 

takes into account whether the problem the student is currently 

working on was generated from the same template as the previous 

problem. 

The next section describes the ASSISTments system, its template 

system and the data used for this paper. Section 3 describes BKT 

and BKT-ST in more detail, and describes the analyses we per-

formed on these models. The results are reported in Section 4, 

followed by discussion and possible directions for future work in 

Section 5. 

2. TUTORING SYSTEM AND DATA 

2.1 ASSISTments 
ASSISTments [4] is a freely available web-based tutoring system 

used primarily for middle and high school mathematics. In addi-

tion to providing a way for teachers to assess their students, AS-

SISTments also assists the students in a few different ways: 

through the use of series of on-demand hint messages that typical-

ly end in the answer to the question (the “bottom-out hint”), 

“buggy” or feedback messages that appear when the student gives 

a common wrong answer, and “scaffolding” questions that break 

the original question into smaller questions that are easier to an-

swer. 

While teachers are free to author their own content, ASSISTments 

provides a library of approved content, which includes problem 

sets called skill-builders, which are meant to help students prac-

tice a particular skill. While most problem sets contain a fixed 

number of problems that must all be completed for a student to 

finish, a skill-builder is a special type of problem set that assigns 

questions in a random order and that is considered complete once 

a student answers three consecutive questions correctly on the 

same day. 
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While requiring students to answer three consecutive questions 

correctly on the same day to complete a skill-builder ensures that 

they have some level of knowledge of the particular skill being 

exercised, it takes some students many problems to achieve this, 

meaning they may see the same problem more than once if the 

skill-builder does not contain enough unique problems. 

To ensure this does not happen (or at least make it highly unlike-

ly), ASSISTments has a templating system that facilitates creating 

large numbers of similar problems quickly. The content creator 

creates a question as normal, but specifies that it is a template and 

uses variables in the problem statement and answer rather than 

specific values. Then, they are able to generate 10 unique prob-

lems at a time from that template, where each problem is random-

ly populated with specific values as prescribed by the template. 

This is especially useful for skill-builders, whose problems should 

theoretically all exercise the same skill. Figure 1 shows an exam-

ple of a template (a) and a problem generated from it (b). 

 

Figure 1. A template (top image) and a problem generated 

from it (bottom). The variables ‘b’ and ‘c’ in the template are 

replaced by ‘8’ and ‘23’ in the generated problem. 

2.2 Data 
In this work, we used ASSISTments skill-builder data from the 

2009-2010 school year. This data set consists of 61,522 problem 

attempts by 1,579 students, spread across 67 different skill-

builders. A (student, skill-builder) pair was only included if the 

student attempted three or more problems on that particular skill-

builder, and a skill-builder was included if it was used by at least 

10 students and at least one of them completed it. 

3. METHODS 
In this section, we begin by describing Bayesian Knowledge Trac-

ing, and then move on to our modification of it, called Bayesian 

Knowledge Tracing – Same Template. Finally, we describe the 

analyses we performed using these two models. 

3.1 Bayesian Knowledge Tracing 
Bayesian Knowledge Tracing (BKT) [3] is a popular student 

model that uses a dynamic Bayesian network to infer student 

knowledge using only a student’s history of correct and incorrect 

responses to questions that exercise a given knowledge compo-

nent (or “skill”). 

Typically, a separate BKT model is fit for each skill. BKT models 

assume that there are only two states a student can be in for a 

given skill: the known state or the unknown state. Using a stu-

dent’s performance history on a given skill, a BKT model infers 

the probability that the student is in the known state on question t, 

P(Kt). 

Fitting a BKT model involves estimating four probabilities: 

1. Prior Knowledge – P(L0): the probability the student 

knew the skill before answering the first question 

2. Learn Rate – P(T): the probability the student will know 

the skill on the next question, given that they do not 

know the skill on the current question 

3. Guess Rate – P(G): the probability the student will an-

swer the current question correctly despite not knowing 

the skill 

4. Slip Rate – P(S): the probability the student will answer 

the current question incorrectly despite knowing the 

skill 

Note that forgetting is typically not modeled in BKT: it is as-

sumed that once a student learns a skill, they do not forget it. An 

example of a BKT model, represented as a static unrolled Bayesi-

an network, is shown in Figure 2. 

 

 

Figure 2. Static unrolled representation of Bayesian 

Knowledge Tracing. The Kt nodes along the top represent 

latent knowledge, while the Ct nodes represent performance. 

3.2 Bayesian Knowledge Tracing – Same 

Template 
The Bayesian Knowledge Tracing - Same Template (BKT-ST) 

model differs from the regular BKT model in one way: it takes 

into account whether the problem it’s about to predict was gener-

ated from the same template as the previous problem the student 

worked on. This is modeled as a binary observed variable that 

influences performance. 

This results in six parameters to be learned per skill: the initial 

knowledge rate, the learn rate, and two sets of guess and slip rates: 

one set for when the previous problem and current problem were 

generated from the same template (P(G|Same) and P(S|Same)), 

and one for when they aren’t (P(G|Different) and P(S|Different)). 

The model is shown in Figure 3. 
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Figure 3. Static unrolled representation of Bayesian 

Knowledge Tracing – Same Template. The only difference 

from BKT is the presence of the Dt nodes, which represent 

whether the previous question was generated by the same 

template as the current one. 

3.3 Analyses 
The first analysis in this work simply considers how well the two 

models fit the data compared to each other overall. This is deter-

mined by fitting separate BKT and BKT-ST models for each skill 

and then predicting unseen student data using five-fold student-

level cross-validation. Then, we evaluate each model’s ability to 

predict next question correctness by computing the mean absolute 

error (MAE), root mean squared error (RMSE) and area under the 

curve (AUC) for each student and then averaging across students 

for each type of model. Finally, two-tailed paired t-tests are used 

to determine the significance of the differences in the metrics. 

The second analysis considers what the metrics look like for each 

model based on how many templates were used for each skill-

builder problem set. This is done by splitting the predictions made 

in the first analysis by how many templates were used in the cor-

responding skill-builder. We did this to see when it would be 

worth using BKT-ST over BKT. 

Finally we consider the parameter values learned for the BKT-ST 

model to determine any effects that seeing problems generated by 

the same template consecutively has on guessing and slipping. 

The BKT and BKT-ST models used in these analyses are fit using 

the Expectation-Maximization (EM) algorithm in the Bayes Net 

Toolbox for Matlab (BNT) [7]. The initial values given to EM for 

BKT were 0.5 for P(L0) and 0.1 for the other three parameters. 

This was also true for BKT-ST, except the slip rate was set to 0.2 

when the current and previous problems were generated from the 

same template. 

4. RESULTS 
In this section, we first present the overall comparison of BKT 

and BKT-ST, then show how they compare to each other based on 

the number of templates used in each skill-builder. Finally, we 

examine the learned parameters for the BKT-ST model. 

4.1 Overall 
The overall results comparing BKT to BKT-ST are shown in 

Table 1. 

Table 1. Overall results of fitting BKT and BKT-ST models. 

 MAE RMSE AUC 

BKT 0.3830 0.4240 0.5909 

BKT-ST 0.3751 0.4205 0.6314 

 

According to these results, BKT-ST outperforms BKT in all three 

metrics. Statistical tests confirmed that these results were reliable 

(MAE: p < .0001, t(1578) = 9.939; RMSE: p < .0001, t(1578) = 

4.825; AUC: p < .0001, t(1314) = -11.095), though according to 

the values in the table, the only noticeable gain was in AUC. 

4.2 By Number of Templates 
Next, we considered how well each model did based on the num-

ber of templates a skill-builder contained. The results are shown 

in Figure 4. 

 

 

Figure 4. Graph of MAE, RMSE and AUC for the BKT and 

BKT-ST models, plotted against the number of unique tem-

plates per skill. 

Interestingly, both BKT and BKT-ST decline rapidly in terms of 

model goodness as the number of templates per skill-builder in-

creases. This is likely the case because those with more templates 

are more likely to have more than one skill being tested within 

them. Interestingly, although both models decline similarly in 

terms of MAE and RMSE, BKT-ST declines at a slower rate than 

BKT does in terms of AUC. In fact, BKT-ST outperforms BKT in 

terms of AUC for every group of skills with more than one tem-

plate. When grouping the skills by the number of templates they 

had, BKT-ST achieved an AUC of at least 0.0236 better than 

BKT for each group that had more than one template, and 

achieved AUC values that were 0.1086 and 0.0980 better than 

BKT for skills with five and 10 templates, respectively. Addition-

ally, while BKT performs worse than chance (AUC < 0.5) on 

skills with eight or more templates, BKT-ST never performs 

worse than chance. 

4.3 Parameter Values 
To analyze the parameters learned by BKT-ST, for each skill, we 

took the average value of each of the six parameters learned 

across the five folds from the overall analysis. 

First, we computed the average value of each parameter across all 

67 skills. These are shown in Table 2. 

Table 2. Means and standard deviations of BKT-ST parameter 

values learned across 67 skill-builders 

Parameter Mean SD 

P(L0) 0.6030 0.2617 

P(T) 0.2966 0.2500 
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P(G|Different) 0.1880 0.1655 

P(S|Different) 0.2941 0.1737 

P(G|Same) 0.3337 0.2495 

P(S|Same) 0.1514 0.0848 

 

From the results in Table 2, it appears that on average, seeing 

consecutive questions generated from the same template both 

increases the guess rate (p < .0001, t(66) = -4.516) and decreases 

the slip rate (p < .0001, t(66) = 7.186). 

Next, we examined how these parameters changed with respect to 

the number of templates used per skill-builder. The average values 

of the performance parameters (guess and slip rates for same and 

different templates) are shown in the graph in Figure 5. The re-

sults for skills with one template are omitted since the 

P(G|Different) and P(S|Different) parameters are meaningless in 

such cases. 

 

 

Figure 5. Average value of each performance parameter for 

the number of templates used per skill-builder. 

Although there is no clear pattern for any of the four performance 

parameters shown in the graph, the average value of P(G|Same) is 

always higher than that of P(G|Different), and that of P(S|Same) is 

always lower than that of P(S|Different), with respect to the num-

ber of templates used per skill. This appears to reinforce the no-

tion that seeing consecutive problems generated from the same 

template makes the latter easier to solve, whether this is due to the 

skill model being too coarse-grained or familiarity with a certain 

type of problem within a skill inflating performance. 

5. DISCUSSION AND FUTURE WORK 
From the results in this work, it appears that modifying Bayesian 

Knowledge Tracing to take similarity between consecutive prob-

lems into account moderately improves cross-validated predictive 

performance, especially in terms of AUC. Additionally, this work 

showed that seeing consecutive similar problems improves stu-

dent performance by both increasing the guess rate – the probabil-

ity of answering a question correctly despite not knowing the skill 

– and decreasing the slip rate – the probability of answering a 

question incorrectly despite knowing the skill. Regardless of the 

underlying reason for this, whether it is because the skill model is 

too coarse-grained or simply that familiarity with a type of prob-

lem within a skill improves performance, it appears important for 

student models to take the similarity of the problems students 

encounter into account when trying to model student knowledge. 

One direction for future work would be to try going back further 

in the problem sequence to see how the similarity of problems 

earlier in a student’s history affects their ability to answer the 

current problem. Additionally, it would be interesting to deter-

mine whether the effect changes in certain situations. For exam-

ple, what is the effect of seeing two similar problems in a row, 

followed by one that is different from both? 

Another area of interest would be to use a model that takes prob-

lem similarity into account when trying to predict a longer-term 

outcome, such as wheel-spinning [2], retention and transfer, as 

opposed to simply predicting next question correctness. 

Finally, applying this model and others like it to other learning 

environments and skill models of various grain sizes would be 

helpful for understanding when it is useful. Presumably, if a skill 

model is at the appropriate grain size, the difference in predictive 

performance between BKT and BKT-ST would be reduced. The 

same would be true of systems that fall to one of two extremes: 

those whose problem sets are highly repetitive, and those whose 

problem sets have a rich variety of problems. 
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ABSTRACT 
Simulated data plays a central role in Educational Data Mining 
and in particular in Bayesian Knowledge Tracing (BKT) research. 
The initial motivation for this paper was to try to answer the 
question: given two datasets could you tell which of them is real 
and which of them is simulated? The ability to answer this 
question may provide an additional indication of the goodness of 
the model, thus, if it is easy to discern simulated data from real 
data that could be an indication that the model does not provide an 
authentic representation of reality, whereas if it is hard to set the 
real and simulated data apart that might be an indication that the 
model is indeed authentic.  In this paper we will describe initial 
analysis that was performed in an attempt to address this question. 
Additional findings that emerged during this exploration will be 
discussed as well.   

Keywords 

Bayesian Knowledge Tracing (BKT), simulated data, parameters 
space.  

1. INTRODUCTION 
Simulated data has been increasingly playing a central role in 
Educational Data Mining [1] and Bayesian Knowledge Tracing 
(BKT) research [1, 4]. For example, simulated data was used to 
explore the convergence properties of BKT models [5], an 
important area of investigation given  the  identifiability issues of 
the model [3]. In this paper, we would like to approach simulated 
data from a slightly different angle. In particular, we claim that 
the question,”given two datasets could you tell which of them is 
real and which of them is simulated?”, is interesting as it can be 
used to evaluate the goodness of a model and may potentially 
serve as an alternative metric to RMSE, AUC, and others. We 
would like to start approaching this problem in this paper by 
comparing simulated data to real data with Knowledge Tracing as 
the model.  
 

Knowledge Tracing (KT) models are widely used by cognitive 
tutors to estimate the latent skills of students [6]. Knowledge 
tracing is a Bayesian model, which assumes that each skill has 4 
parameters: two knowledge parameters including initial (prior 
knowledge) and learn rate, and two performance parameters 
including guess and slip. KT in its simplest form assumes a single 
point estimate for prior knowledge and learn rate for all students, 
and similarly identical guess and slip rates for all students.  
Simulated data has been used to estimate the parameter space and 
in particular to answer questions that relate to the goal of 
maximizing the log likelihood (LL) of the model given parameters 
and data, and improving prediction power [7], [8], [9].  

In this paper we would like to use the KT model as a framework 
for comparing the characteristics of simulated data to real data, 
and in particular to see whether it is possible to distinguish 
between the real and sim datasets. 
 

2. DATA SETS 
To compare simulated data to real data we started with 2 real 
dataset generated from the assisstment software1 (specifically, 
datasets G6.207-exact.txt with 776 students and G6.259-exact.txt 
with 212 students) from a previous BKT study [10]. Both of the 
datasets consist of 6 questions in linear order where all students 
answer all questions. Next, we generated synthetic, simulated data 
using the best fitting parameters that were found for the real data 
as the generating parameters. By this we generated a simulated 
version of dataset G6.207 and a simulated version of dataset 
G6.259 that had the exact same number of questions, number of 
students, and was generated with what appears to be the best 
fitting parameters. The specific best fitting parameters that were 
found for each dataset and were used to generate the simulated 
data are presented in table 1. 
 
Table 1. Best fitting parameters for each dataset. These 
parameters were used to generate the simulated datasets.  
 N Prior Learn Guess Slip 
G6.207 776 .453 .068 .270 .156 
G6.259 212 .701 .044 .243 .165 
 
 

3. METHODOLOGY 
We are interested to find out whether it is possible to distinguish 
between the simulated data and the real data. The approach we 
took was to calculate LL for the gird of all the parameters space 
(prior, learn, guess, and slip). We hypothesized that the LL pattern 
of the simulated data and real data will be different across the 
parameters space. For each of the matrices we conducted a grid 
search with intervals of .04 that generated 25 intervals for each 
parameter and 390,625 total combinations of prior, learn, guess, 
and slip. For each one of the combinations LL was calculated and 
placed in a four dimensional matrix. We used fastBKT [11] to (a) 
calculate the best fitting parameters of the real datasets, (b) 
generate simulated data, and (c) calculate the LL of the 
parameters space. Additional code in Matlab and R was generated 
to put all the pieces together2. In particular, we calculated the LL 
for all the combinations of two parameters where the other two 
parameters were fixed to the best fitting value. In an additional 
analysis, we let all parameters be free and took the average LL for 
all combinations of two parameters, collapsed over the space of 
the other two parameters not visualized. The motivation for this 
was to visualize the error space interactions in the four dimensions 
of the model.  

 

                                                                    
1 Data can be obtained here: http://people.csail.mit.edu/zp/ 
2 Matlab and R code will be available here: 
2 Matlab and R code will be available here: 

http://myweb.fsu.edu/rr05/ 
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Figure 1.a (left). Heat maps of LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data that was 
generated with the best fitting parameters of the real dataset.  The two parameters not in each figure were fixed to the best 
parameters.  Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and 
triangles indicate the best fitting parameters to the real data (that were also used to generate the simulated data). In this case the 
triangles and circles fit the same point.  
Figure 1.b (right). Heat maps of delta LL between real dataset G6-207 and the corresponding simulated data that was generated 
with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best parameters. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

4. DOES THE LL OF SIM vs. REAL DATA 
LOOK DIFFERENT? 
Our initial thinking was that as we are using a simple BKT model, 
it is not authentically reflecting reality in all its detail and 
therefore we will observe different patterns of LL across the 
parameters space between the real data and the simulated data. 
The LL space of simulated data in [5] was quite striking in its 
smooth surface but the appearance of real data was left as an open 
research question. 

4.1 Does the LL of sim vs. real data looks 
different across two parameters grids?  

First, we calculated the LL over all the combinations of two 
parameters for dataset G6.207 where the other two parameters were 
fixed to the best fitting value. For example, when we calculated LL 
for the combination of slip and prior (top right figure in figure 1.a), 
we fixed learn and guess to be .068 and .270 accordingly. To our 
great surprise, when we plotted heat maps of the LL matrices of the 
real data and the simulated data (Figure 1.a - real data is presented 
in the upper triangle and simulated (sim) data is presented in the 
lower triangle) we received what appears to be identical matrices 
(for example, the upper right heat map is the (slip x prior) LL 
matrix of the real data, whereas the lowest left heat map is the (slip 
x prior) LL matrix of the sim data).  

The extent of the similarity between the matrices was surprising 
and in order to get a better picture of the differences between them  

we plotted heat maps of the deltas between the real data and the 
simulated data (LL_RealData-LL_SimData) for each matrix. Even 
though the matrices appear to be identical, as can be seen in Figure 
1.b, there is in fact a difference between the LL of the matrices 
although it is not a big difference compared to the values of LL. 
Another surprising finding was that the LL of the real data was in 
many cases higher than the LL of the sim data. We expected that 
the model would better explain the sim data as there should not be 
additional noise as expected in reality, and therefore the LL of the 
sim data should be higher, yet the findings were not consistent with 
this expectation.  

Another interesting finding was that the location of the ground truth 
(the triangle) in most of the cases resulted in smaller delta between 
the real and the sim data although not in all cases (e.g., guess x 
slip). Note that the circles in Figure 1.b indicate the minimum 
absolute difference in LL between the real and the sim data, and 
this point is usually not located at the exact ground truth (except for 
learn x guess). 

Another interesting finding can be seen in Figure 1.a - slip vs. 
guess. Much attention has been given to this LL space which 
revealed the apparent co-linearity of BKT with two primary areas 
of  convergence, the upper right area being a false, or “implausible” 
converging area as defined by [3]. What is interesting in this figure 
is that despite what appears to be two global maxima, the point 
with the best LL in this dataset is in fact the lower region for both 
sim and real data.  
Next we conducted the same analysis with the second dataset.  
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Figure 2.a (left) Heat maps of delta LL between real dataset G6-259 (k=212 students) and the corresponding simulated data that 
was generated with the best fitting parameters of the real dataset. The two parameters not in each figure were fixed to the best 
parameters. Blue areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles 
indicate maximum LL of the given matrix, and triangles indicate the best fitting parameters to the real data. 
Figure 2.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 
 
 

Even though the G6-259 dataset was significantly smaller than the 
first dataset, we received very similar results to the first dataset 
with surprisingly similar heat maps for the sim and real data (see 
Figure 2.a). Like in the first dataset, notice that even though the 
LL heat maps look very similar, there is a difference in the delta 
heat maps (see Figure 2.b). Nevertheless, there is an interesting 
difference between the two datasets. Concretely, unlike the bigger 
dataset (G6-207), in G6-259 the LL of the sim data was actually 
higher than the real data in most cases. 

4.2 What if we average LL over 2 parameters 
across all the combinations of the other 2 
parameters? 
We were interested to find out how will the heat maps look like if 
we do not fix the other two parameters to be best fit, but rather 
average the LL across the entire space of the other two 
parameters. For example, to calculate the matrix of guess and slip 
we practically calculated a matrix of guess and slip LL for each 
combination of learn and prior (25 x 25 = 625 matrices) instead of 
only one matrix for the best fit learn and prior. Then, we took the 
average of all these matrices for each combination of guess and 
slip (see Figure 3.a). The results are both surprising and 
interesting. As far as (guess x slip), we no longer receive the two 
maximum (global and local) that we received when learn and 
prior where fixed to best fit parameters. Another interesting 
finding is the relationship between the average maximum across 
the other two parameters and the overall best fit parameters for 

given two parameters. For example, if we look at the heat map of 
matrix (learn x prior) we can see that there is not a big difference 
between the average maximum point (white circle) and the overall 
best fit parameters (white triangle). This may indicate that 
changing guess and slip will not affect the value of learn and prior 
that maximizes the LL, therefore might suggest independency. If 
we look at (guess x learn), we see that changes in prior and slip 
will again not have an impact on the best fit value of guess, 
however, they will affect the value of learn.   Then again, if we 
look at the heat map of (prior x guess), we will see that both prior 
and guess are sensitive to changes in learn and slip. Yet again, the 
extremely surprising part of these results is that the sim data 
appear to be almost identical to the real data. It is possible to see 
from Figure 3.b though that indeed there are differences between 
the simulation data and the real data and like before, the LL of the 
real data is higher than that of the sim data in the larger dataset.  

Like for the fixed matrices, we received similar LL matrices for 
the smaller dataset (G6-259) (see table 4.a). In addition, as before, 
the LL of the sim data for this dataset was higher than that of the 
real data (the opposite direction of the larger dataset G6-207). 
Another interesting finding for this dataset can be seen in the 
(guess x slip) matrices (4.b).  Notice that while the sim data 
converged to the lower point of the blue area, the real data 
converged to the higher point. Nevertheless, this only happened in 
the averages matrices and not in the fixed ones.  
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Figure 3.a (left). Heat maps of average LL of real assistment dataset G6-207 (k=776 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 3.b (right). Heat maps of delta LL between real assistment dataset G6-207 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. Blue 
areas indicate high difference between the real and sim LL, and red areas indicate lower difference. Circles indicate minimum 
absolute delta of the given matrix, and triangles indicate the best fitting parameters to the real data. 

 

 
Figure 4.a (left). Heat maps of average LL of real assistment dataset G6-259 (k=212 students) and a corresponding simulated data 
that was generated with the best fitting parameters of the real dataset.  The average is across the two parameters not in each figure. 
Blue areas indicate high LL, and red areas indicate lower LL. Circles indicate maximum LL of the given matrix, and triangles 
indicate the best fitting parameters to the real data (that were also used to generate the simulated data). 
Figure 4.b (right). Heat maps of delta LL between real assistment dataset G6-259 and the corresponding simulated data that was 
generated with the best fitting parameters of the real dataset. The average is across the two parameters not in each figure. 
 

Published in CEUR-WS: 
BKT20y workshop (Yudelson, González-Brenes and Mozer) 
In EDM 2014 Extended Proceedings (Gutierrez-Santos and Santos)

144



 

5. DISCUSSION AND FUTURE WORK 
The initial motivation of this paper was to find whether it is 
possible to discern a real data from a sim data. If for a given 
model it is possible to tell apart a sim data from a real data then 
the authenticity of the model can be questioned. This line of 
thinking is in particular typical of simulation use in Science 
context, where different models are used to generate simulated 
data, and then if a simulated data has a good fit to the real 
phenomena at hand, then it may be possible to claim that the 
model provides an authentic explanation of the system [12]. We 
believe that it may be possible to generate a new matric for 
evaluating the goodness of a model by comparing a simulated data 
from this model to real data.  

In this work we explored similarities between simulated and real 
data. Nevertheless, we are yet to answer the question “is this data 
for real?”. In other words, what we still did not do in this work is 
come up with an algorithm that can take a dataset and determine 
whether it is real or simulated. Another way to think of it is to 
come out with an algorithm that can tell us whether it is possible 
to discern real and simulated data and use it as an indication of the 
goodness of the model. We found differences between the real 
and sim data, but are they strong enough to be noticed by such 
algorithm in a consistent way? In future work we plan to further 
investigate this question by creating a training set of multiple real 
datasets and sim datasets and use machine learning techniques to 
extract a learning algorithm from this training dataset that can take 
as input a dataset and determine whether it is real or sim. We 
argue that if such algorithm can be found, it is an indication that 
the underlying model can be improved.   In future work we also 
plan to compare different variations of the KT model and contrast 
their resulting simulated data with real data. In particular we plan 
to generate a more complex set of simulated data that is based on 
a more complex model (e.g., different learning rate for different 
types of questions), and then use it as “real” data with the (wrong) 
assumption that the model is simple (standard BKT model) to 
simulate a scenario where the real data is indeed grounded in 
more complex model than our assumptions and see what results 
would a learning algorithm that uses this “real” data in 
comparison to a sim data will yield.  

In addition, this paper raises interesting questions that we did not 
think of while trying to answer our initial question. For example, 
it seems like there is potential to dive deeper into the average LL 
(Figures 3&4) and find more about the relationships and 
dependencies between the different parameters. Another question 
that emerged is how could it be that the simulated data had lower 
LL than the real data in the bigger dataset yet lower in the smaller 
dataset? Further analysis is needed to answer these questions.  

Last but not least, given the remarkable resemblance between the 
sim data and the real data, these initial findings provide an 
indication that the BKT model is a model with a very strong hold 
in reality. 
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ABSTRACT
Knowledge tracing is a method which enables approximation
of a student’s knowledge state using a Bayesian network for
approximation. As the applications of this method increase,
it is vital to understand the limits of this approximation. We
are interested how well knowledge tracing performs when
students’ prior knowledge on the topic is extremely high or
low. Our results indicate that the estimates become more
erroneous when prior knowledge is extremely high (prior =
0.90).

Keywords
bayesian knowledge tracing, personalization, prior, parame-
ter estimation

1. INTRODUCTION
The Bayesian Knowledge-Tracing (BKT) algorithm was de-
veloped in 1995 in an effort to model students’ changing
knowledge state during skill acquisition [5]. The idea is to
interpret students’ knowledge – a hidden variable – based
on observed answers to a set of questions. The algorithm
tracks the change in this probability distribution over time
using a simple Bayes’ net. The model is often presented as
four parameters: prior, learn, guess and slip (see Figure 1).
Prior refers to the probability that the student knows the
material initially, before acquiring any skills, learn indicates
that the student did not have the skill initially but acquired
it through doing the exercise, guess refers to accidentally
answering the question correct and slip to answering acci-
dentally wrong.

Knowledge tracing is the most prominent method used to
model student knowledge acquisition and is used in most in-
telligent learning systems. These systems have been said to
be outperforming humans since 2001 [3] and have been used
in the real world to tutor students [4]. For these reasons it is

important to fully understand the strengths and limitations
of knowledge tracing before applying it more widely in the
classroom. As the parameters of the model are now known,
there is a need to estimate these parameters from the given
data. Previous research has demonstrated that the accuracy
of parameter estimation – and therefore knowledge tracing
– can be improved by applying different heuristics [17, 13]
or methods [16, 18] including personalizing the model for
each user [20, 8] or by extending the data used for analysis
[15, 6, 1].

Our work starts from a different premise: how robust is the
BKT approach to variation in the parameter space? Our
special interest is in the prior variable, which correlates to
a student’s knowledge of the topic before answering a ques-
tion. In any classroom, MOOC or otherwise, some students
will come in with a better understanding of the material
than others. Therefore it is important to study the effec-
tiveness of knowledge tracing on parameter estimation when
prior is extremely high or low.

If knowledge tracing models are inaccurate in modelling stu-
dents of a certain prior parameter, then smart tutors and
other systems designed to help those students learn will be
less effective. Especially if the students being modelled in-
accurately are those students doing poorly in the class, as
the smart tutors exist to help them the most.

Figure 1: The model of knowledge tracing
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2. PREVIOUS WORK
For the purposes of this work, here we shortly summarize
three methods previously applied to improve the prediction
capabilities of BKT models. However, these methods are in-
sufficient to address the practical problem described above,
resulting in a need for our own experiment.

2.1 Individualization
Yudelson et al. [20] experimented with individualization by
bringing student-specific parameters into the BKT algorithm
on a larger scale. They split the usual skill-specific BKT
parameters into two components: one skill-specific and one
student-specific. They then built several individualized BKT
models and added student-specific parameters in batches,
examining the effect each addition had on the model’s per-
formance. They found that student-specific prior parame-
ters did not provide a vast improvement. However, student-
specific learning provided a significant improvement to the
model’s prediction accuracy.

Pardos and Heffernan furthered the experiment by develop-
ing a method of formulating the individualization within the
Bayes’ Net framework [11]. Especially interesting in terms
of our work is the difference prior values and methods sug-
gested for this individualization. Pardos observes that mod-
els taking student spesific priors based on students’ prior
knowledge clearly outperform traditional knowledge trace
approach. This is a contrast Yudelson et al.’s findings [20]
but it still underscores the importance of individualization
in the BKT algorithm.

Related to individualization per user, there have been dis-
cussion on using different values per resources. It can be
argued that different exercises teach different topics [7, 14].
This can be further used to individualize the model for dif-
ferent topics, an approach which has gained initial support
on empirical studies [14].

2.2 Enhancing the data
The second approach to improve these methods is related
to enhanching the data used for prediction. In its most
simple form, this can be done by adding additional relevant
data, such as data from past years, to the analysis [15].
Others have explored the possibility of adding more data to
the general domain-related knowledge on the models, and
suggest that these indeed improve the estimates [6].

However, the current direction in enhanced data relates to
information available on user interaction – especially in MOOC
environments where it is possible to access this kind of data.
To illustrate, Baker, Corbett, and Aleven [1] explore interac-
tions with the learning system and other non-exercise related
data, such as time spent on answering and asking help, to
determine the difference between slips and guesses.

We applaud these efforts and acknowledge that data other
than just student responses may indeed help to detect both
the cases where initial knowledge (prior) is high and when
it is low, instead of tweaking the EM algorithm further.

2.3 Improving the methods
There are several heuristics currently used to enhance the
BKT algorithm. One such heuristic involves expecting the

Figure 2: The approach used in this study

sum of slip and guess to be less than or equal to 1 [17]. Other
work determined that one’s starting estimated parameters
could affect where the algorithm converged to. In order to
improve the accuracy of the convergence, it was suggested
that starting parameters be selected from a Dirichlet distr-
bution derived from the data set [2, 13].

There have also been efforts to explore other machine learn-
ing methods on educational data. Initial trials born in the
KDDCup competition use a medley of random forests and
other machine learning algorithms but these methods have
proven largely unsuccessful [16, 18].

The knowledge tracing community, while accepting the va-
lidity of some of these heuristics [9, 12], has criticized their
inability to provide any insight into the student learning
model. Individualization, however, has the potential to im-
prove the BKT algorithm while also providing a pedagogical
explanation for said improvements.

3. METHODOLOGY
We began by generating datasets with specific known ini-
tial parameters in order to simulate groups of students at
different knowledge levels. We then ran expectation max-
imization (EM) on these datasets and allowed knowledge
tracing to calculate its own estimated parameters. We then
compared these estimated parameters to the original ones
used for generation to determine if the accurency of the pa-
rameter estimation depends on the initial parameters.

Table 1: Ground Truth Parameter Sets

prior learn guess slip
Set 1.1 . . . 1.6 0.15 0.10 0.10 0.05
Set 2.1 . . . 2.6 0.30 0.10 0.10 0.05
Set 3.1 . . . 3.6 0.15 0.20 0.10 0.05

...
Set 48.1 . . . 48.6 0.90 0.20 0.20 0.10
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3.1 Generating the Data
As our goal was to determine how the prior ground truth af-
fects parameter estimation, we varied the prior used to syn-
thesize the data sets. We used six different priors (0.15, 0.30, . . . ,
0.75, 0.9), and two variations on learn, slip and guess1 each
(see Table 1); total of 48 variations of these parameters.
Each of these data sets consists of 10,000 students and 20
observations per student. To increase the variation, we gen-
erated 6 datasets per condition. This kind of simulated ap-
proach has been previously used to evaluate the success of
Bayesian machine learning methods [8].

3.2 Analysis Procedure
For each data set, we estimated the parameters using the
expectation maximization fitting (EM) algorithm using the
fastHMM implementation [10]. The parameter estimation
was conducted using a grid search with ten parameters, and
the best fitting model was selected using the log likelihood.

Using our 288 data sets, we can compare the estimates and
ground truths for each parameter and analyze the accuracy
of the estimates. We apply the standard methods of root-
mean-square error (RMSE) and other visualizations to do
our analysis. Using RMSE, we will be able to see if certain
ground truths lend themselves to more accurate estimations.

4. RESULTS
First, let us explore the parameter estimation in detail. The
avarage RMSE measurement in the data (Table 2) indicate
that the prediction quality decreases as the prior increases;
there is also increase of variance of the RMSE. This indi-
cates that the predictions with higher priors are first more
erronous and second, they converge in a larger area, result-
ing in variance. To confirm our observations, we conducted
a Wilcox-Mann-Whitney test to explore if the computed
RMSEs differented in statistically significant manner. As
shown in Table 3, both the RMSEs computed from the data
sets with priors 0.15 and 0.90 statistically differ significantly
from the other datasets (p < 0.05). Therefore we conclude
that the EM algortihm performs badly when prior is high.

To further understand this phenomena, we explore the esti-
mates per parameter. The errors per parameter are shown
in the Figure 3. The mean estimates are rather constantly
close by the zero, though a higher prior does affect variance.
As ground truth prior increases, the variance of guess and
learn increases while the variance of prior decreases. In the-
ory, a lesser variance on the prior prediction should imply
1Variations were 0.10 and 0.20 for learn and guess, and 0.05,
0.10 for slip.

Ground truth prior mean RMSE var RMSE
0.15 0.056639 0.000594
0.30 0.069073 0.001137
0.45 0.070005 0.000584
0.60 0.074044 0.001874
0.75 0.075946 0.002229
0.90 0.085257 0.004876

Table 2: The mean and variance of the root-mean-square
errors per prior

Figure 4: Log likelihoods with different parameters

a more accurate prior estimate. However, as we saw in Ta-
ble 2, this is not actually the case. The prior estimate gets
less accurate as the value of the ground truth prior increases.
In Figure 3 we can see again some of the results we saw in
Table 2: the prediction accuracy decreases when prior is 0.6
and continues to decrease as prior increases.

Figure 4 shows that the log likelihood for each of the param-
eter combinations we analyzed. We see a slight, but non-
significant increase in the log likelihoods, suggesting that
the model is performing better – even while our RMSE er-
ror indicator demonstrates otherwise. It is also noteworthy
to observe that that when slip is 0.10, all log likelihoods
range between -65500 and -65250 but when slip is 0.05, all
log likelihoods range between -40000 and -35750, indicat-
ing that the slip value had a dramatic effect on the model
estimation accurancy.

5. IMPLICATIONS
Our findings indicate that there are higher errors in the
parameter estimations when prior is high (0.90). This is
probably due to the lack of evidence available for the HMM
to attribute to the learn and guess parameters. One ap-
proach to examine the impact of these errors is to examine
the students’ subjective experience in different conditions
[19]. As our data is syntetic, we can not measure the time
consumed by students due to errors, as examined by Youdel-
son & Koedinger [19]. Instead we explore the difference on
the number of questions students’ need to answer to achieve
mastery learning – for our purposes knowledge above 95 %
and assuming that the students answer each question cor-
rectly.

Examining the case of high prior knowledge, and when the
true learning was 0.1, we observed that majority of students
needed to answer over 5 times to achieve mastery (or: from
the 168 predicted value sets available, only 24 achieved mas-
tery), and for the high learning (0.2) the situation was not

Table 3: Significant differences between the RMSEs

0.15 0.30 0.45 0.60 0.75 0.90
0.15 1 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
0.30 1 0.347 0.614 0.967 0.014
0.45 1 0.660 0.125 0.081
0.60 1 0.744 0.035
0.75 1 0.007
0.90 1
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Figure 3: Predicting parameters with different values of prior

significantly better – there 56 values achieved mastery with 5
responses. This indicates that the impact indeed was signif-
icant in terms of impact to students learning and highlights
the importance of this study.

6. CONCLUSIONS
We started this study with the motivation to explore how
well the knowledge tracing method performs when the prior
is high or low; this performance has practical implications
when applying this approach in a heterogenius classroom
where students arrive with highly different knowledge of the
domain. We studied this empirically by generating 288 dif-
ferent synthetic datasets and explored the difference between
the predicted parameters and the parameters used to gen-
erate the dataset.

Our results indicated a slightly increased in the estimation
error when prior was 0.90, which we mostly attribute to
higher error in learn and guess parameters. This observation
was statistically significant and most likely due to the fact
that students with higher priors produce less information
to be used by the HMM to estimate the guess and learn
parameters.

We explored the influence these errors had on the propabil-
ity of knowledge and observed that these errors significantly
reduced the speed students achieved mastery learning. This
result therefore implies that more work needs to be done to
detect those with high prior knowledge to cater their learn-
ing needs.
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ABSTRACT
Many different metrics are used to evaluate and compare
performance of student models. The aim of this paper is to
provide an overview of commonly used metrics, to discuss
properties, advantages, and disadvantages of different met-
rics, and to summarize current practice in research papers.
The paper should serve as a starting point for workshop
discussion about the use of metrics in student modeling.

1. INTRODUCTION
A key part of intelligent tutoring systems are models that
estimate the knowledge of students. To compare and im-
prove these models we use metrics that measure quality of
model predictions. Metrics are also used (sometimes implic-
itly) for parameter fitting, since many fitting procedures try
to optimize parameters with respect to some metric.

At the moment there is no standard metric for model eval-
uation and thus researchers have to decide which metric to
use. The choice of metric is an important step in the research
process. Differences in predictions between competing mod-
els are often small and the choice of metric can influence the
results more than the choice of a parameter fitting proce-
dure. Moreover, fitted model parameters are often used in
subsequent steps in educational data mining and thus the
choice of metric can indirectly influence many other aspects
of the research.

However, despite the fact that the choice of metric is im-
portant and that there is no clear consensus on the usage
of performance metrics, the topic gets very little attention
in most research papers. Most authors do not provide any
rationale for their choice of metric. Sometimes it is not even
clear what metric is exactly used, so it may be even difficult
to use the same metric as previous authors. The main aim
of this paper is to give an overview of performance metrics
relevant for evaluation of student models and to explicitly
discuss points that are in most papers omitted.

2. OVERVIEW OF METRICS
To attain clear focus we discuss only models that predict
probability of a correct answer. We assume that we have
data about n answers, numbered i ∈ {1, . . . , n}, correctness
of answers is given by ci ∈ {0, 1}, a student models provides
predictions pi ∈ [0, 1]. A model performance metric is a
function f(~p,~c). Note that the word “metric” is here used
in a sense “any function that is used to make comparisons”,
not in the mathematical sense of a distance function. Since
we are interested in using the metrics for comparison, mono-
tone transformations (square root, logarithm, multiplication
by constant) are inconsequential and are used mainly for
better interpretability (or sometimes rather for traditional
reasons).

2.1 Mean Absolute Error
This basic metric consider the absolute differences between
predictions and answers: MAE = 1

n

∑n
i=1 |ci − pi|. This is

not a suitable performance metric, because it prefers models
which are biased towards the majority results. As a simple
illustration, consider a simulated student which answers cor-
rectly with constant probability 0.7. If we compare differ-
ent constant predictors with respect to this metric, we get
that the best model is the one which predicts probability
of correct answer to be 1. This is clearly not a desirable
result. As this example illustrates, the use of MAE can lead
to rather misleading conclusions. Despite this clear disad-
vantage, MAE is sometimes used for evaluation (although
mostly in combination with other metrics, which reduces
the risk of misleading conclusions in published papers).

2.2 Root Mean Square Error
A similar metric is obtained by using squared values instead

of absolute values: RMSE =
√

1
n

∑n
i=1(ci − pi)2. Note that

from the perspective of model comparison, the important
part is only the sum of square errors (SSE). The square
root in RMSE is traditionally used to get the result in the
same units of as the original “measurements” and thus to
improve interpretability of the resulting number. In the
particular context of student modeling and evaluation of
probabilities, this is not particularly useful, since the result-
ing numbers are hard to interpret anyway. In order to get
better interpretability researchers sometimes use R2 metric:
R2 = 1−

∑n
i=1(ci−pi)2/

∑n
i=1(ci−c̄)2. With respect to com-

parison of models, R2 is equivalent to RMSE since here again
the only model dependent part is the sum of square errors.
In the context of the standard linear regression (where it is
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most commonly used) R2 has a nice interpretation as “ex-
plained variability”. In the case of logistic regression (which
is more similar to student models) this interpretation does
not hold and different “pseudo R2” metrics are used (e.g.,
Cox and Snell, McFadden, Nagelkerke). Thus a disadvan-
tage of R2 is that unless the authors are explicit about which
version of R2 they use (usually they are not), a reader cannot
know for sure which metric is reported.

In educational data mining the use of RMSE metric is very
common (it was also used as a metric in KDD Cup 2010
focused on student performance evaluation). In other ar-
eas, particularly in meteorology, mean square error (RMSE
without the square root) is called the Brier score [1]. The
Brier score is often decomposed into additive components
(e.g., reliability and refinement) which provide further in-
sight into the behaviour of the predictor. Moreover, in an
analogy to AUC metric and ROC curve (described below),
this metric can be interpreted as area under Brier curves.
These methods may provide interesting inspirations for stu-
dent modeling.

2.3 Metrics Based on Likelihood
The likelihood of data (the answers) given a model (pre-

dicted probabilities) is L =
∏n

i=1 p
ci
i · (1 − pi)

(1−ci). Since
we are indifferent to monotonic transformations we typically
work with the numerically more stable logarithm of the like-
lihood LL =

∑n
i=1 ci log(pi)+(1−ci) log(1−pi). This metric

can also be interpreted from information theoretic perspec-
tive as measure of data compression provided by a model [4].
The log-likelihood metric can be further extended into met-
rics like Akaike information criterion (AIC) and Bayesian
information criterion (BIC). These metrics penalize large
number of model parameters and thus aim to avoid overfit-
ting. In the context of student modeling it is typically much
better to address the issue of overfitting by cross-validation.
Since AIC and BIC provide a faster way to assess models
than cross-validation, they may be useful as heuristics in
some algorithms (e.g., learning factor analysis), but they
are not serious contenders for proper model comparison.

MAE, RMSE and LL have all the form of “sum of penalties
for individual errors” and differ only in the function which
specifies the penalty. For RMSE and LL values of penalty
functions are quite similar, the main difference is in the in-
terval [0.95, 1], i.e., in cases where the predictor is confident
and wrong. These cases are penalized very prohibitively by
LL, whereas RMSE is relatively benevolent. In fact the LL
metric is unbounded, so single wrong prediction (if it is too
confident) can ruin the performance of a model. This prop-
erty is usually undesirable and an artificial bound is used.
This corresponds to basically forcing a possibility of a slip
and guess behaviour into a model. After this modification
the penalties for RMSE and LL are rather similar. Never-
theless, the LL approach “penalize mainly predictions which
are confident and wrong” is reasonable thus it is rather sur-
prising that this metric is used only marginally in evaluation
of student models (it is used mostly in connection with AIC
or BIC).

2.4 Area Under an ROC Curve
Another popular metric is based on the receiver operating
characteristics (ROC) curve. If we want to classify pre-

dictions into just two discrete classes (correct, incorrect),
we need to select a threshold for the classification. For a
fixed threshold we can compute standard metrics like preci-
sion, recall, and accuracy. If we do not want to use a fixed
threshold, we can use the ROC curve, which summarises the
behaviour of the prediction model over all possible thresh-
olds. The curve has “false positive rate” on x-axis and “true
positive rate” on the y-axis, each point of the curve corre-
sponds to a choice of a threshold. Area under the ROC curve
(AUC) provides a summary performance measure across all
possible thresholds. It is equal to the probability that a
randomly selected correct answer has higher predicted score
than a randomly selected incorrect answer. The area under
the curve can be approximated using a A’ metric, which is
equivalent to the well-studied Wilcoxon statistics [2]. This
connection provides ways to study statistical significance of
results (but requires attention to assumptions of the tests,
e.g., independence).

The ROC curve and AUC metric are successfully used in
many different research areas, but their use is sometimes
also criticised [3], e.g., because the metric summarises per-
formance over all possible thresholds, even over those for
which the classifier would never be used in practice. From
the perspective of student modeling the main reservation
seems to be that this approach focuses on classification and
considers predictions only in relative way – note that if all
predictions are divided by 2, the AUC metric stays the same.

In the context of student modeling we are usually not in-
terested in classification, we are often interested directly in
absolute values of probabilities and we need these values
to be properly calibrated. The probabilities are often com-
pared to a fixed constant (typically 0.95) as an indication of
a mastered skill and the specific value is meant to carry a
certain meaning. Probabilistic estimates can be also used to
guide the behaviour of a system to achieve suitable challenge
for students, e.g., by choosing question of right difficulty or
modifying difficulty by number of options in multiple choice
questions.

Nevertheless, despite this disadvantage, AUC is widely used
for evaluation of student models, often as the only metric.
It seems that in some cases AUC is used as the only metric
for final evaluation, but the parameter fitting procedure uses
(implicitly) different metric (RMSE or LL). Particularly in
cases of brute force fitting this approach seems strange and
should be at least explicitly mentioned.
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ABSTRACT
In the knowledge-tracing model, error metrics are used to
guide parameter estimation towards values that accurately
represent students’ dynamic cognitive state. We compare
several metrics, including log-likelihood (LL), RMSE, and
AUC, to evaluate which metric is most suited for this pur-
pose. In order to examine the effectiveness of using each
metric, we measure the correlations between the values cal-
culated by each and the distances from the corresponding
points to the ground truth. Additionally, we examine how
each metric compares to the others. Our findings show that
RMSE is significantly better than LL and AUC. With more
knowledge of effective error metrics for learning parameters
in the knowledge-tracing model, we hope that better param-
eter searching algorithms can be created.

1. INTRODUCTION
In Bayesian Knowledge Tracing (BKT), one of the essential
elements is the error metric that is used for learning model
parameters: prior, learn, guess, and slip. Choice of a type
of error metric is crucial because the error metric takes a
role of guiding the search to the best parameters. The BKT
model can be fit to student performance data by using a
method which finds a best value calculated from the error
metric such as log-likelihood (LL), root-mean-squared error
(RMSE), or area under the ROC curve (AUC).

As a modeling method, grid search/brute force [1] is often
used to find the set of parameters with optimal values of
the error metric, and Expectation Maximization (EM) algo-
rithm [5] is also commonly used to choose parameters max-
imizing the LL fit to the data. Many studies have com-
pared different modeling approaches [1, 4]. However, the
findings are varied across the studies, and it has still been
unclear which method is the best at predicting student per-
formance [2].

Pardos and Yudelson compares different error metrics to in-
vestigate which one has the most accuracy of estimating the
moment of learning [6]. Our work extends this comparison

∗For more details of this work, please refer to the full tech-
nical report [3].
†Asif Dhanani, Seung Yeon Lee, and Phitchaya Mangpo
Phothilimthana contributed equally to this work and are
listed alphabetically.

by looking closer into the relationship between three popular
error metrics: LL, RMSE, and AUC, and particularly eluci-
dating the relationship to one another closer to the ground
truth point.

2. METHODOLOGY
To assess whether LL, RMSE, or AUC is the best error met-
ric to use in parameter searching for the BKT model, we
needed datasets with known parameter values in order to
compare these with the parameter values predicted by us-
ing different error metrics. Therefore, we synthesized 26
datasets by simulating student responses based on diverse
known ground truth parameter values.

Correlations to the ground truth. For each dataset, we
evaluated LL, RMSE, and AUC values on all points over the
entire prior/learn/guess/slip parameter space with a 0.05
interval. On each point, we calculated students’ predicted
responses (probability that students will answer questions
correctly). We then used these predicted responses with the
actual responses to calculate LL, RMSE, and AUC for all
points. To determine which error metric is the best for this
purpose, we looked at the correlations between values cal-
culated from error metrics (i.e. LL, RMSE, and AUC) and
the euclidean distances from the points to the ground truth.
We applied logarithm to all error metrics other than LL in
order to compare everything on the same scale. Finally, we
tested whether the correlation between the values calculated
by any particular error metric and the distances is signifi-
cantly stronger than the others’ by running one-tailed paired
t-tests comparing all three metrics against one another.

Distributions of values. We visualized the values of LL
and -RMSE of all points over the 2 dimensional guess/slip
space with a 0.02 interval while fixing prior and learn pa-
rameter values to the actual ground truth values. Using the
guess and slip parameters as the axes, we visualize LL and
-RMSE values by color. The colors range from dark red to
dark blue corresponding to the values ranging from low to
high.

Direct comparison: LL and RMSE. We plotted LL val-
ues and RMSE values of all points against each other in or-
der to observe the behavior of the two metrics in detail. We
then labeled each data point by its distance to the ground
truth with a color. The range of colors is the same as used
in the previous method.
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Comparision ∆ of correlations t p-value
RMSE > LL 0.0408 8.9900 << 0.0001
RMSE > AUC 0.0844 2.7583 0.0054
LL > AUC 0.0436 1.4511 0.0796

Figure 1: T-test statistics

(a) LL Heatmap (b) -RMSE Heatmap

Figure 2: LL and -RMSE values when fixing prior
and learn parameter values and varying guess and
slip parameter values. Red represents low values,
while blue represents high values. The white dots
represent the ground truth.

3. RESULTS
Correlations to the ground truth. The average LL, RMSE,
and AUC correlations were 0.4419, 0.4827, and 0.3983 re-
spectively. We define that an error metric A is better than
B if the correlation between values calculated by an error
metric A and the distances to the ground truth is higher than
that of B. By this definition, RMSE was better than LL on
all 26 datasets and better than AUC on 18 of 26 datasets.
This is validated by the one-tailed paired t-test shown in
Figure 1 revealing RMSE as statistically significantly better
than both LL and AUC.

Distributions of values. Figure 2 shows the heat maps of
LL and RMSE on a representative dataset. If we follow the
gradient from the lowest value to the highest value in the
LL heat map, we see that it is very high at the beginning
(far from the ground truth) and is very low at the end (close
to the ground truth). Conversely, in the -RMSE heat map,
the change in the gradient is low. Additionally, notice that
the darkest blue region in -RMSE heat map is smaller than
that in LL heat map. This suggests that we may be able to
refine the proximity of the ground truth better with RMSE.

Direct comparison: LL and RMSE. Figure 3 shows a LL
vs -RMSE graph from the most representative dataset. As
expected, LL values and RMSE values correlate logarithmi-
cally. Additionally, a secondary curve, which we will refer
to as the hook, is observed in varying sizes among datasets.
The hook converges with the main curve when the -RMSE
and LL values are both sufficiently high and the points are
very close to the ground truth.

Before this point, when we look at a fixed LL value with
varied RMSE values, most points in the hook have higher
-RMSE values and are closer to the ground truth than do the
points in the main curve. However, this same pattern is not
seen for a fixed RMSE value with varied LL values. After the
curve and hook converge, we can infer that both RMSE and
LL will give similar estimates of the ground truth. However,
for a portion of the graph before this point, RMSE is a better
predictor of ground truth values.

Figure 3: LL vs -RMSE of dataset 25 when prior =
0.564, learn = 0.8, guess = 0.35 , and slip = 0.4

4. CONCLUSION
In our comparison of LL, RMSE, and AUC as metrics for
evaluating the closeness of estimated parameters to the true
parameters in the knowledge tracing model, we discovered
that RMSE serves as the strongest indicator. RMSE has
a significantly higher correlation to the distance from the
ground truth on average than both LL and AUC, and RMSE
is notably better when the estimated parameter value is not
very close to the ground truth. The effectiveness of teach-
ing systems without human supervision relies on the ability
of the systems to predict the implicit knowledge states of
students. We hope that our work can help advance the pa-
rameter learning algorithms used in the knowledge tracing
model, which in turn can make these teaching systems more
effective.
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ABSTRACT 
Predicting the success of students as a function of different 

predictors has been a topic that has been investigated over the 

years. This paper explores the socio-demographic variables like 

gender, region lived and studied, nationality and high school 

degree that may influence success of students. We examine to 

what extent these factors help us to predict students’ academic 

achievement and will help to identify the vulnerable students and 

their need for extra tutoring or similar supportive services at an 

early time.  

We analyzed the data of the Epoka University students that have 

been enrolled from 2007 to 2013. The sample includes 1211 

undergraduate students where 716 did and were supposed to 

complete the three-year bachelor studies in the past six semesters.  

Based on the data mining techniques the most important 
predictors for student success were the students’ high school GPA 
and gender. For students with high school grades below average, 
females were found to have a higher percentage of success than 
boys. No significant correlation was found between the students’ 
success and the demographic information. 

Keywords 

Academic achievement, influence, classification tree, outcome 

1. INTRODUCTION 
Increasing the student graduation and decreasing the dropout rates 
is a long term goal of the higher education institutions. From the 
students’ perspective, a timely and successful graduation is vital 
as these two factors would strongly affect their employability rate. 
Employability rate has become an indicator in determining the 
ranking of higher education institution (HEI), thus HEIs are 
focusing more on increasing this rate [2]. 

Many of the students studying at the university face several 
difficulties during the first year and thus the performance of the 
first year has been identified as an important predictor of timely 
graduation rate.  In terms of keeping the students in the university, 
the retention rate is a factor that has been studied extensively. 
Mallincrodt and Sedlacek (1987) found that freshman class 

attrition rate were greater than the other academic years with 
numbers running up to 30%.[3] Therefore most researchers 
targeted the first year students. An early identification of the 
students at high risk of failing will enable a timely intervention 
with the necessary measures by the educators that would increase 

the graduation rate. Preventing students' failure depends on the 
identification of the factors affecting success.  

Here in this work we will analyze whether the background 
information has any effect on the success rate of regular students. 
The only data we collected during the registration period of Epoka 
University based on the registration form. The content of this 
form determined by the local authorities and University 
Administration. In this study we tried to get answers if we can use 
this data to predict student success. The main objective of our 
study is to determine the factors that may affect the study 
outcomes in Epoka University.  

2. DATA AND METHODOLOGY  
Epoka University student management system does not provide 
data in the format ready for a direct statistical analysis and 

modeling. Therefore a data preparation and cleaning were 
undertaken to prepare database for modeling.  

Table Descriptive statistics  – Study outcome (716 students) 

Descriptive 
    count % 

Domain F
A

IL
 

P
A

S
S

 

F
A

IL
 

P
A

S
S

 

T
o

ta
l 

GENDER 
M 221 189 53.9 46.1 57.3 
F 78 228 25.5 74.5 42.7 

COUNTR
Y 

ALB 238 372 39.0 61.0 85.2 
TUR 35 14 71.4 28.6 6.8 
KOS 14 17 45.2 54.8 4.3 
OTH 12 14 46.2 53.8 3.6 

NATION
ALITY 

ALB 256 382 40.1 59.9 89.1 
OTH 43 35 55.1 44.9 10.9 

REGION 
CITY 262 372 41.3 58.7 88.5 
VILL. 37 44 45.7 54.3 11.3 

HS_GPA 
UPPER 48 224 17.6 82.4 38.0 
INTER. 89 113 44.1 55.9 28.2 
LOWER 160 77 67.5 32.5 33.1 

 
2.1. Data and Methodology  
Outcome that we used in our analysis is for the outcome of the 
student at the end of three-year study. We measured only 
outcomes, labeled as: Pass and Fail. Students labeled ‘Pass’ 
successfully completed the program at the end of three years. 
Students labeled as ‘Fail’ include the withdrawn students from the 
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program voluntarily or by the academic registry for not fulfilling 
the regulations. Those students who stayed on the program until 
the end of the study but scored less than the graduation grade 
(2.00) were also allocated into this category.  

The data set with numeric continuous variable such as secondary 
school grade (HS GPA) was converted into a categorical variable 
with only three levels A (UPPER), B (INTERMEDIATE) or C 
(LOWER) denoting grades above 9 out of 10, grades between 8 
and 9 and grades less than 8 respectively. Other variables 
(nationality, citizenship, and region) were classified upon major 
groups.  

In this study we conducted three main types of data mining 
approaches. Descriptive approach which concerns the nature of 
the dataset such as the frequency table and the relationship 
between the attributes obtained using cross tabulation analysis. 
Predictive approach which is conducted by using four different 
classification trees and a comparison between these and Logistic 
regression to confirm the accuracy of the predictors. 

Classification tree models can handle a large number of predictor 
variables, are non-parametric, can capture nonlinear relationships 
and complex interactions between predictors and dependent 
variable.[1] 

Before generating the classification trees we classified the 
variables according to the study outcome, i.e. whether students are 
eligible to be graduated or not. We used attribute selection to rank 
the variables by their importance for further analysis. Then we 
generated the classification trees in four different growing 
methods.  

2.2. Summary Data Description  
We carried out a cross-tabulation for each variable and the study 
outcome after cleaning the data as shown in the table above. Table 

shows that the majority of the successful students are female (over 
57%) which is the result of the fact that 74.5% of the female 
students successfully completed the study. This suggests that 
female students are more likely to succeed than their male 
classmates. In terms of country and nationality it is clearly seen 
that Albanian population is leading the group.  

An expected result has been observed in secondary school 
degrees. We can say that high school degree graduation ratio is 
directly proportional to the university graduation ratio. While 82% 
of upper students were able to complete the study on time 56% of 
intermediate and 32% of lower group students were able to 
complete.  

2.3. Decision Trees  
Although the results of the attribute selection suggests continuing 
analysis with only the subset of predictors, we included all 
available predictors in our classification trees but only 2 variables 
were used in the diagrams: HS_GPA and GENDER. Even though 
some variables may have little significance to the overall 
prediction outcome, they can be essential to a specific record [1].  

Almost all growing methods, (CHAID, exhaustive CHAID, CRT 
and QUEST) generated exactly the same trees. The largest 
successful group consists of 272 (38%) students. HS_GPA of this 
group is over 90%. The largest unsuccessful group contains 237 
students (33% of all participants). They have a HS_GPA less than 
80%. The next largest group considered also as unsuccessful 
students are male students having lower HS_GPA.  

As the cross-validation estimate of the risk (0.309) indicates that 
the successful or unsuccessful students are predicted with an error 
of 30.9% of the cases which means the risk of misclassifying a 
student is approximately 31%. This result is consistent with the 
results in the CHAID classification matrix. The Overall 

percentage shows that the model only classified correctly 70% of 
students. The classification tables, however, reveal one potential 
problem with this model: for unsuccessful students, it predicts as 
successful for only 65.9% of them, which means that 34% of 
failing students are inaccurately classified with the passing 
students. 

2.4. Logistic regression 
The Variables not in the Equation table in block 0 shows that four 
of the five variables are individually significant predictors of 
whether a student is successful or not. Region is not a significant 
predictor. The variables not in the Equation table in block 1 shows 
that only high school grade point average and gender are 
significant predictors, but not the other variables. This result also 
confirms why these two were the only variables used in decision 
trees 

3. CONCLUSIONS 
This study examines the background information from enrolment 
data that impacts upon the study outcome programs at the Epoka 
University. Based on results, the classification accuracy from the 
classification trees was significantly high 71% in all tree methods. 
Although all the variables except the region individually 
significant predictors as described in attribute selection trees 
displayed only two variables Gender and secondary school 

degree. This outcome is also confirmed by the logistic regression. 
Block 0 classification implied that all except region were good 
predictors (p<,001) but block 1 classification highlighted that only 
gender and secondary school degree were significant. 
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ABSTRACT 

Knowledge tracing has been used to predict students’ knowledge 

and performance for almost twenty years. Recently, researchers 

have become interested in looking at students’ behaviors, 

especially those considered gaming behaviors. In this work, we 

attempt to leverage a variation of knowledge tracing to predict 

gaming behaviors without damaging the prediction of 

performance. We compare the predictions of this model to those 

of knowledge tracing and a separate engagement tracing model. 

Keywords 

Knowledge tracing, affect, engagement, gaming, behavior 

1. INTRODUCTION 
When Corbett and Anderson first published the knowledge 

tracing model in 1995, they claimed that their goal was “to 

implement a simple student modeling process that would allow 

the tutor to […] tailor the sequence of practice exercises to the 

student’s needs” [1]. While knowledge tracing is generally able 

to predict students’ performance “quite well,” it does not take 

into account the possibility of disengagement. Traditionally, 

knowledge tracing is used with the probability of transition from 

a learned to an unlearned state set at 0, so students who become 

disengaged are not presumed to be forgetting the skill. When the 

forgetting transition is allowed, models such as knowledge 

tracing can become confounded, mistaking disengagement for 

unlearning, as illustrated in Figure 1. 

 
Figure 1- Bayesian Knowledge Estimation of a student on 

one skill (bottom line) 

Figure 1 suggests that this student was un-learning, while after 

looking at the logs in detail, it was clear that, after the 7th 

problem, the student was just clicking through all the available 

multiple-choice answers without attempting to answer 

correctly.This type of behavior is defined by Baker et al as 

“gaming the system” [2] and is considered to be an indicator of 

disengagement or negative affect. Some work has been done in 

modeling engagement and affect in Intelligent Tutoring Systems 

[3], but relatively little research has focused on combining these 

methods with ways of tracking knowledge, such as knowledge 

tracing, in order to create a model that can predict both student 

performance and disengaged behavior and intervene 

appropriately. 

2. PREVIOUS WORK 
2.1 Bayesian Knowledge Tracing 

Corbett and Anderson’s Bayesian Knowledge Tracing (BKT) 

[1] (Figure 2) is a hidden Markov model. At each time step there 

is a latent node, knowledge, and an observed node, performance. 

The parameters for this model are P(L0), the probability that a 

student already knows the skill; P(T), the probability of learning 

the skill from one time-step to the next; P(G), the probability 

that a student who does not know the skill but correctly guesses; 

and P(S), the probability that a student who does know the skill 

slips and gets the answer incorrect. As mentioned in the 

introduction, P(F), forgetting, is traditionally set at 0, however 

for this work we allow forgetting in order to see if looking at 

behavior affects the amount of forgetting that students appear to 

do. 

 
Figure 2- Bayesian Knowledge Tracing 

2.2 HMM-IRT 

In 2006, Johns and Woolf proposed the Dynamic Mixture Model 

(DMM) for predicting student knowledge and engagement [4]. 

They used a hidden Markov model like BKT for tracing 

engagement, but paired it with an Item Response Theory-like 

model for predicting knowledge. Rather than predicting 

knowledge at each time step, there is a single knowledge node 

for every skill and students’ performance relies on that in 

addition to their engagement state. This allowed more accurate 

knowledge predictions than IRT alone, as disengagement, 

indicated by gaming behaviors, could explain away some 

incorrect attempts, rather than attributing those to knowledge. 

P(L) 

P(F) 

P(L) 

P(F) 
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Figure 3- Dynamic Mixture Model 

2.3 The KAT Model 

In our previous work [5], we proposed the knowledge and affect 

tracing (KAT) model (Figure 5), which combines two hidden 

Markov models, BKT and the engagement tracing piece of 

DMM. As in DMM, affect influences performance. This model 

was able to predict both performance and behavior better than 

the dynamic mixture model, but did not predict performance as 

well as standard BKT, perhaps due to over-parameterization [5]. 

 

Figure 4- The KAT Model 

3. THE KTB MODEL 
We propose the “Knowledge Tracing with Behavior” (KTB) 

model. This model has only one latent node, which we call 

“knowledge”-- although in reality is a combination of both 

knowledge and engagement-- and two observables, performance 

and gaming behaviors. This model is shown in Figure 5. 

 
Figure 5- KTB Model 

This model has fewer parameters than the dynamic mixture 

model or KAT model, but still can predict both performance and 

disengaged behavior of the students. 

The variable called Gaming Behavior (B) is defined as either 

gaming or normal. See our definition for “gaming” in this 

context in our previous work [5]. 

4. BAYESIAN ENGAGEMENT TRACING 
Since the performance prediction of the KTB model can be 

compared to that of Bayesian Knowledge Tracing, it is 

necessary to have a model of engagement tracing to compare the 

behavior predictions. To that end, we include a model of 

“Bayesian Engagement Tracing” (BET) in this work, which is 

the same as the HMM part of Johns and Woolf’s model or the 

engagement piece of the KAT model, but not connected to any 

other model (top part of figure 4). 

5. DATASETS AND METHODS 
The data and methods used in this work was the same as that 

used in [5]. The data came from two tutors for middle and high 

school mathematics, ASSISTments and Wayang Outpost. For 

details, please see [5] in the main conference proceedings. 

6. RESULTS AND ANALYSIS 
While KT and KTB both outperform KAT and DMM in all 

predictions, in seven of the nine knowledge components, KTB 

was better able to predict performance than standard knowledge 

tracing, although the only significant difference between the two 

was in the ASSISTments skill “Circle Graph” (p=0.03). 

Interestingly, the Bayesian engagement tracing model was better 

able to predict students’ behavior than KTB in eight of the nine 

knowledge components, although the differences are again not 

significant, except in two cases, “Box and Whisker,” and 

“Triangles” (p=0.02). 

7. DISCUSSION 
We have proposed a new model, knowledge tracing with 

behavior, which can predict both student performance and 

behavior, and have shown that it can do so at least as well as 

BKT and a separate Bayesian engagement tracing, at predicting 

future behaviors (correctness at responding math problems and 

gaming behaviors). KTB seems to stop the false forgetting effect 

that is recorded by KT when forgetting is not allowed to be zero. 
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ABSTRACT 

We use the Additive Factors Model to drive the evaluation of the 

student model of an Intelligent Tutoring System. Using data from 

the Andes Physics Tutor, applying the simple location heuristic 

and implementing the Additive Factors Model tool in the 

Pittsburgh’s Science of Learning Center’s DataShop, we discover 

possible ways to improve the student model of the Andes 

Intelligent Tutor. 

Keywords 

Student modeling, learning curves, additive factors model. 

1. INTRODUCTION 
The quality of student models drive many of the instructional 

decisions that automated tutoring systems make, whether it is 

what feedback to provide, when and how to sequence topics and 

problems in a curriculum, how to adapt pacing to the needs of 

students and even what problems and instructional materials are 

necessary [1]. We used the Additive Factors Model (AFM) tool in 

the Pittsburgh’s Science of Learning Center’s (PSLC) DataShop 

to identify areas for improvement in the curriculum for the 

ANDES Intelligent Tutoring System. 

1.1 BACKGROUND 
Learning curves derived from student models drive evaluation, 

revision and improvement of the Intelligent Tutor. The AFM is a 

statistical algorithm which models learning and performance by 

using logistical regression performed over the “error rate” 

learning curve data [1]. If a student is learning the knowledge 

component (KC) or skill being measured, the learning curve is 

expected to follow a so-called “power law of practice” [2]. If such 

a curve exists, it presents evidence that the student is learning the 

skill being measured or conversely, that the skill represents what 

the student is learning. 

While use of learning curves is now a standard technique for 

assessing the cognitive models of Intelligent Tutors, the technique 

requires that a method is instated for attributing blame to skills or 

KCs. This simply means that each error a student makes must be 

blamed on a skill or set of skills. Four different heuristics for error 

attribution have been proposed and tested. These heuristics are 

guided by whether the method is driven by location – the simple 

location heuristic (LH), the model-based location heuristic 

(MLH); or by the temporal order of events – the temporal 

heuristic (TH), the model-based temporal heuristic (MTH); and 

whether the choice of the student model is leveraged (MLH, 

MTH) [3]. 

2 EVALUATING THE STUDENT MODEL  

2.1Adapting the Andes Log data for the AFM 

Algorithm 
The log data used for this work was obtained from the Andes 

Intelligent Tutor [4] and encompassed four problems in the area 

of electric field, across 102 students. The data was collected in 

Spring 2005 at the US Naval Academy during its regular physics 

class and as part of the PSLC’s LearnLab facility that provides 

researchers, access to run experiments in or perform secondary 

analyzes of data collected from one of seven available technology-

enhanced courses running at multiple high school and college 

sites (see http://learnlab.org). 

Prior to using the AFM tool on the dataset, the simple location 

heuristic (LH) was applied to error transactions in the Andes log 

data which had missing KCs. That is, when the Andes failed to 

assign blame to a KC on an error transaction, the LH will select 

the first correctly implanted KC in the same location as the error. 

The LH was applied to about 44% of the original data. Table 1 

depicts a summary of the LH data.  

2.2 Generating Model Values using AFM 
The Datashop’s AFM algorithm was used to compute statistical 

measures of goodness of fit for the model - Akaike Information 

Criterion (AIC) and Bayesian Information criterion (BIC), as well 

as to generate learning curves for the Andes log data.  

 

3 RESULTS AND DISCUSSION 
We found that there were 5 groups of KCs – “Low and Flat”, “No 

learning”, “Still high”, “Too Little data” and “Good”. The “Low 

and Flat” group indicated KCs where students likely received too 

much practice. It appears that although students mastered the KCs 

they continued to receive tasks for them. It may be better to 

reduce the required number of tasks or change Andes’ knowledge 

tracing parameters so that students get fewer opportunities with 

these KCs. The “Still high” group suggests KCs, which students 

continued to struggle with. Increasing opportunities for practice 

for these KCs might improve the student model. The “No 

learning” group indicated KCs where the slope of the predicted 

learning curve showed no apparent learning. A step towards 

improving the student model could be to explore whether each of 

these KCs can be split into multiple KCs. The new KCs may 

better reflect the variation in difficulty and transfer of learning 

that may be happening across problem steps, which are currently 

labeled by each KC. The KCs in the “Too Little data” group seem 

to be KCs for which students were exposed to insufficient practice 

opportunities for the data to be meaningful. For these KCs, adding 
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more tasks or merging similar KCs might provide data that is 

interpretable. The KCs that appeared “Good” may reflect those in 

which there was substantial student learning. Table 2  shows the 

different group of KCs, their frequencies and AIC and BIC scores. 

Figures 1a – 1d show the different groups of KCs. Intercept (logit) 

and intercept (probability) both indicate KC difficulty. Higher 

intercept values indicate more difficult KCs. The slope parameter 

indicates the KC learning rate. Higher values suggest students will 

learn such KCs faster. 

 

Table 1. LH Data Summary 

Number of Students 102 

Number of Unique Steps 125 

Total Number of Steps 5,857 

Total Number of Transactions 71,300 

Total Student Hours 107.02 

# of Knowledge Component Model 34 

 

Table 2. KC Groups and Statistical Scores 

Low 

and 

Flat 

No 

Learning 

Still 

High 

Too  

Little data 

Good 

2 2 4 24 2 

# of Knowledge Components  34 

AIC 6532.75 

BIC 7668.14 

 

 

 

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

define-constant-

charge-on-obj-var   

1.77 0.85 0.120 

write-known-value-eqn  0.63 0.65 0.037  

 

 

 

Figure 1a – “Good” 

 

   

Figure 1b – “Low and Flat” 

 

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

draw-efield-vector   0.06 0.52 0.000 

 

Figure 1c – “No Learning” 

 

  

KC Name Intercept 

(logit) 

Intercept 

(probability) 

Slope 

compo-parallel-axis   -0.28 0.43 0.000 

draw-electric-force-

given-field-dir   

-0.01 0.50 0.000 

 

Figure 1d – “Still High” 

 

4  CONCLUSION AND FUTURE WORK 
This paper presented how the AFM can be used to evaluate the 

student model of the Andes Physics Tutor. Refining four of the 

five groups of KCs identified, might improve the Andes student 

model. A further approach would to use Learning Factors 

Analysis [1] algorithm to automatically find better student models 

by searching through a space of KC models. The next step is to 

explore these options and measure their effect. 
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