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A B S T R A C T

Efforts to improve U.S. students’ educational outcomes have often focused on improving their engagement, performance,
and retention in science, technology, engineering, and math (STEM) fields. Spatial skills, which enable us to visualize and
manipulate objects in real and imagined spaces, are important for student learning in STEM. Additionally, student learning
may depend on teachers’ skills and attitudes. This study used nationally representative data to examine the spatial skills
of high school students who later became precollege teachers. Results showed that secondary STEM teachers had
substantially stronger spatial skills than secondary non-STEM teachers and preschool/primary teachers. Compared to the
general population, 79% of secondary STEM teachers had above average spatial skills versus 61% of secondary non-STEM
teachers and 47% of preschool/primary teachers. The weaker spatial skills of preschool and primary teachers are
concerning because spatial skills are key to STEM learning beginning at early ages. These results suggest future research
is needed to investigate how teachers’ spatial skills influence student learning.

S C I E N T I F I C A B S T R A C T

Teachers’ skills and attitudes in a specific domain can influence students’ learning in that domain. Here we focused on
spatial skills, which are important for learning in science, technology, engineering, and math (STEM) fields. Fostering
students’ spatial skills may rely on teachers’ comfort in implementing spatially demanding activities in the classroom. This
study used nationally representative data from Project TALENT to examine the spatial skills of high school students who
later became preschool to high school teachers (n � 4,428 teachers). Results showed that secondary STEM teachers had
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stronger spatial skills than secondary non-STEM teachers (by 0.5 standard deviations) and preschool and primary teachers
(by 0.8 standard deviations). These differences remained substantial even after accounting for differences in general
intelligence and gender distributions. These results suggest the need for research on how teachers’ spatial skills impact
students’ spatial skills and STEM learning.

Keywords: spatial skills, STEM, teacher education, grade school education, early childhood education
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Efforts to improve U.S. students’ educational outcomes have often
focused on improving their engagement, performance, and retention
in science, technology, engineering, and math (STEM) fields (e.g.,
Graham, Frederick, Byars-Winston, Hunter, & Handelsman, 2013;
Hayden, Ouyang, & Scinski, 2011). An important factor in learning
STEM topics is spatial skills, which enable us to manipulate and make
sense of spatial relations in real and imagined spaces. Prior studies
have shown that spatial skills are important to STEM learning at all
educational levels. For instance, spatial skills have predicted math
understanding among preschool and primary students (Gunderson,
Ramirez, Beilock, & Levine, 2012; Verdine, Golinkoff, Hirsh-Pasek,
& Newcombe, 2017). Among secondary students, these skills have
been related to performance in science and technology (e.g., Ganley,
Vasilyeva, & Dulaney, 2014), as well as mathematics (Stavridou &
Kakana, 2008). Spatial skills have also predicted students’ pursuit of
STEM degrees and occupations later in life. For instance, spatial skills
measured in middle school (Shea, Lubinski, & Benbow, 2001) and
high school (Wai, Lubinski, & Benbow, 2009) predicted STEM
degree attainment and STEM employment more than a decade later.
These educational and occupational choices are attributed to many
factors such as relative performance in math versus verbal domains
(Park, Lubinski, & Benbow, 2007; Riegle-Crumb, King, Grodsky, &
Muller, 2012; Wang, Eccles, & Kenny, 2013). However, spatial skills
have also predicted STEM degree attainment and employment even
after controlling for mathematics and verbal skills (Wai et al., 2009;
see Wai & Kell, 2017 for a review). In summary, past studies have
found that spatial skills measured from preschool to high school
predict later STEM outcomes, suggesting that spatial skills are critical
to students’ learning at all educational levels.

Students’ learning in a specific domain may depend on teachers’
skills and affect toward that domain. For instance, in one large
longitudinal study, first- and third-grade teachers’ pedagogical content
knowledge of mathematics predicted students’ gains in mathematical
achievement (Hill, Rowan, & Ball, 2005; for a review of more recent
studies, see Gess-Newsome, 2015). In another study, first- and
second-grade girls improved less in mathematics to the extent that
their female teachers were anxious about doing mathematics problems
(Beilock, Gunderson, Ramirez, & Levine, 2010). Teachers’ skills and
attitudes may also affect student learning in areas that are not formally
taught, including spatial skills. For instance, spatial anxiety (i.e.,
anxiety about completing spatial tasks such as navigating in an unfa-
miliar mall) in first and second grade teachers predicted their students’
mental rotation skills at the end of the school year, even after con-
trolling for teachers’ math anxiety and students’ mental rotation skills
at the beginning of the school year (Gunderson, Ramirez, Beilock, &
Levine, 2013). However, Gunderson et al. (2013) did not measure
teachers’ spatial skills, leaving open questions about how they relate
to anxiety and influence students’ spatial skills.

To characterize teachers’ spatial skills, this present study analyzed
the nationally representative Project TALENT dataset, which sampled
nearly 400,000 high school students in 1960 and followed them for
over 1 decade (Wise, McLaughlin, & Steel, 1979). We examined

spatial skills in three different categories of teachers: preschool and
primary teachers, secondary STEM teachers, and secondary non-
STEM teachers. We tested for differences between categories (e.g.,
preschool/primary vs. secondary STEM teachers) and within each
category (e.g., secondary English vs. social studies teachers). In
contrast, prior studies of teachers’ spatial skills have used convenience
samples of preservice teachers (e.g., Lord & Holland, 1997; Marchis,
2017) or grouped all teachers into one aggregate category (Wai et al.,
2009), leaving open questions about how teachers’ spatial skills vary
across educational levels and subject areas. We also compared teach-
ers’ spatial skills to the population means of (a) all high school
students sampled in Project TALENT and (b) college graduates in
Project TALENT. Early childhood advocates have recently called for
all preschool teachers to have at least a bachelor’s degree (Barnett,
2003; National Research Council, 2001), and many public preschool
programs are now following this recommendation (C. C. Miller,
2017). College graduates were therefore an important reference pop-
ulation in addition to the general high school population sampled in
Project TALENT.

Method

Data Sources

Longitudinal dataset. Project TALENT was a nationally repre-
sentative longitudinal study of roughly 400,000 participants who were
high school students (Grades 9–12) when first sampled in the spring
of 1960. During this first wave of data collection, participants com-
pleted several survey questionnaires and cognitive tests including
measures of spatial, mathematical, and verbal skills (see Wai et al.,
2009, e.g., items from the cognitive measures). Follow-up question-
naires were administered 1, 5, and 11 years after participants’ ex-
pected high school graduation year. For instance, the 11-year
follow-up was conducted in 1974 for the 9th grade cohort (i.e.,
students who were ninth graders when first tested in 1960), 1973 for
the 10th grade cohort, 1972 for the 11th grade cohort, and 1971 for the
12th grade. The follow-up questionnaires asked about participants’
educational attainment, occupation, personal health, and other topics.
Cognitive tests were administered only in the first wave of data
collection when participants were high school students, and not in the
follow-up waves (see also Wise et al., 1979, for a full description of
the measures and questionnaires administered).

We obtained this longitudinal dataset by completing a restricted use
data agreement with the American Institutes of Research (AIR). AIR
gave us version 0e of the Project TALENT dataset, which had
377,016 participants and 2,102 variables. The file was named
“all_master0e_rel.sas7bdat,” last modified October 9th, 2013, and
sized 1.15 gigabytes. Supplemental appendixes S1 and S2 contain the
R and Stata scripts used to process and analyze this data file for our
research. However, the data use agreement we signed prohibits shar-
ing this data file with other researchers. Researchers interested in
reproducing or extending our analyses should instead contact AIR
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directly to obtain the Project TALENT dataset (see https://www
.projecttalent.org/contact/).

Participants selected for analysis. Our analyses focused on
teachers who taught at the preschool to secondary school level at the
11-year follow-up (n � 4,478). From these 4,478 teachers, 50 were
excluded from analyses because they had missing data for all four
spatial tests (i.e., they had no spatial test data), resulting in a final
analytic sample size of n � 4,428. Based on the categorization scheme
detailed in Table 1, we grouped these teachers into three categories:
preschool/primary (n � 2,032), secondary non-STEM (n � 1,455),
and secondary STEM (n � 941). For instance, the secondary STEM
category included teachers who taught mathematics (n � 344), sci-
ence (n � 379), and trade/industrial/vocational education (n � 218);
see Table 1 for more information on teacher categorization and
sample sizes. Teachers who taught art, music, special education, or
speech were excluded from our analyses because Project TALENT’s
coding of occupations did not distinguish between primary versus
secondary teachers for those subjects.

Data Analytic Procedures

Standardized cognitive composite scores. Consistent with Wai
et al.’s (2009) analyses, scores on individual cognitive tests were

combined to create composite scores for spatial, mathematical, and
verbal skills (see Table 2 for description of these individual tests). For
instance, the spatial composite was based on four tests measuring
three-dimensional (3D) spatial visualization, two-dimensional (2D)
spatial visualization, mechanical reasoning, and abstract reasoning
skills. Raw scores were summed using weights provided in Wai et al.
(2009); estimated reliabilities for these composites were approxi-
mately 0.90 (see Humphreys, Lubinski, & Yao, 1993 for psychomet-
ric details).

Among the n � 4428 teachers included in analyses, a small per-
centage (3.6%) had missing data for at least one cognitive test.
Multiple imputation was used to impute missing values for the 11
individual cognitive tests before their scores were summed to compute
composite scores. The imputation model was an additive regression
model based on the full Project TALENT sample of n � 377,016
participants. Five imputed data sets were created using the aregIm-
pute() function in the Hmisc R package (Analytics Vidhya Content
Team, 2016; see Appendix S1 for additional details). Each dataset was
analyzed separately using the procedures described below, and the
results from the five data sets were pooled. All standard errors and
significance tests reported in the Results section took into account
both the within- and between-imputation variances (White, Royston,
& Wood, 2011). Results were similar when using listwise deletion
(i.e., exclude participants with any missing data on the cognitive
tests), but multiple imputation is widely considered a superior method
(White et al., 2011).

To compare teachers to population means, cognitive composite
scores were standardized (i.e., converted to z scores) using the full
Project TALENT sample. Scores were standardized within each grade
level to account for cohort effects (e.g., twelfth graders outperforming
ninth graders). For instance, a ninth grader’s standardized spatial
score was calculated using the overall ninth grade mean and standard
deviation for the composite spatial score. We also computed another
set of standardized scores using only participants who had completed
college by the 11-year follow-up survey. Analyses using scores stan-
dardized relative to the college graduate population included only
college-educated teachers (n � 3,841) and excluded teachers who had
not earned a college degree by the 11-year follow-up (n � 247) or had
missing data for their highest level of education (n � 340); see
Table 3. These standardized scores therefore compared teachers to
two reference populations: (a) all high school students in Project
TALENT’s first wave of data collection and (b) college graduates. We
tested for differences from these population means using two-tailed,
one-sample t tests that compared sample means with 0 (i.e., the
reference population mean).

Table 1
Sample Size and Percent Male by Teacher Type

Teacher type n
Percent male
(weighted)

Preschool/primary 2,032 15%
Elementary school 1,786 17%
Nursery school or kindergarten 246 .4%

Secondary non-STEM 1,455 52%
Commercial education 142 62%
English 455 45%
Foreign language 149 40%
Home economics 98 0%
Physical education 254 50%
Social studies 357 76%

Secondary STEM 941 80%
Mathematics 344 74%
Science 379 76%
Trade/industrial/vocational education 218 90%

Note. Teachers specializing in art, music, special education, or speech were
excluded because Project TALENT’s occupational categorization did not
distinguish between primary versus secondary teachers for those teacher types.
These data were based on the primary occupations that participants reported at
the 11-year follow-up.

Table 2
Descriptions of Tests Used for Cognitive Ability Composites

Composite Test Description

Spatial 3D Spatial Visualization Visualizing 2D figures after they have been folded into 3D figures
2D Spatial Visualization Visualizing 2D figures when they were rotated or flipped in a plane
Mechanical Reasoning Deducing relationships between gears, pulleys, and springs as well as knowledge of the effects of basic physical

forces, such as gravity
Abstract Reasoning A nonverbal measure of finding logical relationships in sophisticated figure patterns

Math Mathematics Information Knowledge of math definitions and notation
Arithmetic Reasoning Reasoning ability needed to solve basic arithmetic items
Introductory Mathematics All forms of math knowledge taught through the ninth grade
Advanced Mathematics Knowledge in algebra, plane and solid geometry, probability, logic, logarithms, and basic calculus

Verbal Vocabulary The general knowledge of words
English Composite Capitalization, punctuation, spelling, usage, and effective expression
Reading Comprehension The comprehension of written text covering a broad range of topics

Note. See Wai, Lubinski, and Benbow (2009) for details on how individual test scores were combined to compute ability composite scores.
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Regression analyses. Multiple regression models compared spa-
tial skills across teacher types and controlled for covariates such as
mathematical and verbal skills. Teacher type was entered into regres-
sion models using two dummy codes that compared secondary STEM
and non-STEM teachers with preschool/primary teachers. Postestima-
tion commands were used to compare secondary non-STEM and
STEM teachers to each other (see Appendix S2 for the Stata code used
to run these regression models and postestimation commands). The
shared variance between spatial, mathematical, and verbal skills ac-
counts for general intelligence (Wai et al., 2009). Controlling for
mathematical and verbal skills therefore tested whether differences in
teachers’ spatial skills were driven by differences in general intelli-
gence. Additionally, we controlled for gender because men typically
outperform women on several spatial tasks (D. I. Miller & Halpern,
2014), and gender ratios varied widely across teacher types. For
instance, women were 85% of preschool/primary teachers but only
20% of secondary STEM teachers (see Table 1). Table 4 displays the
correlations between the cognitive composites and gender.

Probability survey weights. To ensure our estimates were na-
tionally representative, inverse probability survey weights were used
in all analyses to account for unequal sampling probabilities during
the 1960 testing. These weights also helped address potential bias
introduced by participants who did not respond to the standard mail-in
surveys at the 11-year follow-up (see Wise et al., 1979 for response
rates). To estimate characteristics of these initial nonrespondents,
Project TALENT researchers assiduously tracked down randomly
selected subsamples of them using phone interviews and other meth-
ods. Researchers obtained response rates ranging from 60% to 84%
for these participants who did not respond to the initial mail-in
surveys (Wise et al., 1979, Table 2.3). These special respondents were
given higher weights in longitudinal analyses, as explained in Chapter
4 of the Project TALENT Data Bank Handbook (Wise et al., 1979).
We used the Follow-up Special Sample Weights (B) described in
Table 4.1 of that handbook (Wise et al., 1979) and used a linearized
variance estimator to compute standard errors using Stata’s svy com-
mands (Wolter, 2007).

Results

Comparing to Population Means

Figure 1a shows teachers’ weighted mean cognitive composite
scores standardized relative to the general high school population in
Project TALENT. Among the three teacher types, secondary STEM
teachers had the highest mean spatial skills (M � 0.73), which were
significantly higher than the general population mean, based on a
one-sample t test comparing the standardized mean with 0 (p � .001).
Secondary non-STEM teachers (M � 0.28) also had higher spatial
skills than the population mean (p � .001). Preschool/primary teach-
ers had the lowest spatial skills (M � �0.04), which did not signif-
icantly differ from the population mean (p � .54). Figure 2 shows the
distributions of teachers’ spatial composite scores. Compared to the
general population, 79% of secondary STEM teachers had above
average spatial skills versus 61% of secondary non-STEM teachers
and 47% of preschool/primary teachers (see Figure 2a).

As another descriptive comparison, we also compared college-
educated teachers to the population mean of college graduates. Using
college graduates as a reference population made teachers appear
worse in comparison because the college graduate population per-
formed better than the general high school population (e.g., by 0.5
SDs on the spatial composite). Figure 1b shows this effect by graphing
college-educated teachers’ performance standardized relative to col-
lege graduates. For instance, both college-educated preschool/primary
(M � �0.55) and secondary non-STEM teachers (M � �0.32) had
lower spatial skills than the college graduate population mean (ps �
.001). However, college-educated secondary STEM teachers had
higher spatial skills than the college graduate population mean (M �
0.25; p � .036). Compared to the college graduate population, 60% of
secondary STEM teachers had above average spatial skills versus
40% of secondary non-STEM teachers and 30% of preschool/primary
teachers (see Figure 2b). Secondary STEM teachers therefore had
above average spatial skills, regardless of the reference population. In
contrast, secondary non-STEM teachers were above average and
preschool/primary teachers were average only when compared to the
general population; these other two teacher types were below average
compared to college graduates.

Comparing Figure 1a and Figure 1b shows that choice of the
reference population made a large difference on interpreting whether
teachers had above or below average spatial skills. However, choice
of the reference population had little impact on interpreting the
relative performance of the three teacher types compared to each
other. For instance, secondary STEM teachers performed better than
preschool/primary teachers by roughly 0.8 SDs, regardless of the
reference population. The next set of analyses used multiple regres-
sion to more formally test for differences across teacher types and
control for differences in general intelligence and gender ratios.

Table 3
Highest Degree Earned by Teacher Type (Sample Sizes)

Teacher type

Highest degree earned Preschool/primary Secondary non-STEM Secondary STEM

No response 170 109 61
High school diploma or lower 150 49 48
Bachelor’s degree 1,203 765 476
Graduate or professional degree 509 532 356

Table 4
Correlation Matrix for Cognitive Composites and Gender

Variable Spatial Math Verbal Male

Spatial —
Math .55 —
Verbal .50 .71 —
Male .25 .11 �.13 —

Note. These correlations were based on the full sample of teachers’ scores
(n � 4,428) standardized relative to the general high school population. All
correlations had ps � .0001.
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Comparing Across Teacher Types

Table 5 shows results from regression models predicting all
teachers’ scores standardized relative to the general high school
population (see left side of the table) and college-educated teach-
ers’ scores standardized relative to the college graduate population
(see right side of the table). Results were highly consistent across
these two types of regression models. We therefore focus here on
describing results for the full sample of teachers’ scores standard-
ized relative to the general high school population (but see Table
5 for complete results).

For the full sample of teachers, regression analyses confirmed that
all pairwise comparisons between the three teacher types were statis-
tically significant on the spatial composite (ps � .001; see Model 1 in
Table 5). The difference between preschool/primary versus secondary
STEM teachers was particularly large (b � 0.77) and remained after
controlling for the mathematics composite, verbal composite, and
gender (ps � .001; see Models 2 and 3). The difference between
secondary non-STEM versus STEM teachers (b � 0.45) also re-
mained after controlling for these other covariates (ps � .001). How-
ever, the difference between preschool/primary versus secondary non-

STEM teachers (b � 0.31) was nonsignificant after controlling for
these covariates (ps � .10). Secondary STEM teachers therefore had
the highest spatial skills compared to the other two teacher types, even
after controlling for general intelligence and gender. Preschool and
primary teachers had the lowest spatial skills, but they did not signif-
icantly differ from secondary non-STEM teachers after controlling for
general intelligence and gender.

Categorizing teachers into three groups may mask important dif-
ferences within those groups (e.g., math vs. science teachers). We
therefore conducted omnibus tests for differences within each teacher
group. Spatial skills did not significantly vary within the preschool/
primary teacher group, F(1, 2031) � 1.28, p � .26, or the secondary
STEM teacher group, F(2, 939) � 0.91, p � .40, but did vary within
the secondary non-STEM teacher group, F(5, 1450) � 2.89, p � .013.
However, among secondary non-STEM teachers, no pairwise differ-
ence between any two teacher types (e.g., English vs. social studies
teachers) was significant when using Bonferroni corrections for mul-
tiple comparisons (but see Table 6 for the disaggregated means). More
focused studies are therefore needed to more precisely estimate dif-
ferences within these aggregate teacher categories.

Figure 1. Weighted mean cognitive performance by teacher type. The top panel includes data from all teachers
(n � 4,428) and the bottom panel includes data from only teachers who reported having completed a college
degree (n � 3,841). Error bars denote 95% confidence intervals.
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Discussion

Teachers play an important role in shaping students’ educational
outcomes and experiences (e.g., Ball, Hill, & Bass, 2005; Baumert et
al., 2010; Baylor & Ritchie, 2002). Using nationally representative
data, this study investigated teachers’ spatial skills because spatial
skills are critical to learning in STEM fields. Results showed that

secondary STEM teachers had stronger spatial skills than the general
population, college graduate population, and other teachers. The dif-
ference between secondary STEM teachers and preschool and primary
teachers was particularly large (0.8 standard deviations). Preschool
and primary teachers’ spatial skills were average compared to the
general population, but below average by almost 0.6 standard devia-
tions compared to the college graduate population. Secondary non-
STEM teachers had stronger spatial skills than the general population
but weaker spatial skills than the college graduate population.

Secondary STEM teachers had substantially higher spatial skills
than other teachers even after controlling for general intelligence and
gender; these other factors therefore cannot alone account for STEM
teachers’ especially high spatial skills. These results align with other
studies showing the unique role of spatial skills in predicting students’
decisions to later pursue STEM education and employment (see Wai
& Kell, 2017 for a review). For instance, another way to view our
results is that spatial skills measured in high school predicted later
STEM employment among precollege teachers, even after controlling
for general intelligence. In other words, individuals with teaching
interests and strong spatial skills may be more attracted to teaching
STEM subjects than other subjects.

Preschool and primary teachers, in contrast, may have chosen their
profession based on other motivations such as a desire to interact with
and care for young children (Croft, Schmader, & Block, 2015).
Nevertheless, preschool and primary teachers are often required to

Figure 2. Distributions of composite spatial performance by teacher type.
The top panel includes data from all teachers (n � 4,428) and the bottom panel
includes data from only teachers who reported having completed a college
degree (n � 3,841). The solid black lines within each distribution indicate
median values.

Table 5
Unstandardized Coefficients in Regression Models Predicting Teachers’ Spatial Skills

All teachers College graduates only

Predictor Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

Secondary non-STEM vs. preschool/primary .31*** .12 �.002 .23* .07 �.07
Secondary STEM vs. preschool/primary .77*** .69*** .49*** .80*** .72*** .50***

Secondary STEM vs. secondary non-STEM .45*** .57*** .49*** .57*** .66*** .57***

Math .29*** .26*** .30*** .27***

Verbal .33*** .39*** .25*** .30***

Male .34*** .37***

R2 .10 .40 .43 .09 .37 .39

Note. The left side displays results for all teachers’ spatial skills (n � 4428) standardized relative to the general
high school population, and the right side displays results for college-educated teachers’ spatial skills (n � 3841)
standardized relative to the college graduate population. The reference group for dummy coding was preschool
and primary teachers. The comparison between secondary non-STEM versus STEM teachers was based on
postestimation commands.
* p � .05. *** p � .001.

Table 6
Spatial Composite Scores by Field for Secondary Non-STEM
Teachers

Teacher field n M SE

Commercial education 142 �.19 .22
English 455 .47 .10
Foreign language 149 .63 .25
Home economics 98 .21 .30
Physical education 254 .28 .12
Social studies 357 .03 .13

Note. Means were based on teachers’ scores standardized relative to the
general high school population in Project TALENT. This table displays dis-
aggregated means for the secondary non-STEM teachers because spatial skills
significantly varied by field within this teacher group (p � .013), but not
within the preschool/primary or secondary STEM teacher groups (ps � .25).
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teach STEM topics and may do so reluctantly (e.g., National Research
Council, 2012; Tu, 2006). In our analyses, these teachers had sub-
stantially weaker spatial skills than secondary STEM teachers, despite
having somewhat (though nonsignificantly) higher verbal skills (see
Figure 1). Future research should investigate the motivational and
cognitive factors that may account for these large differences in
teachers’ spatial skills. Such research would be important because
spatial skills are fundamental for students’ STEM learning even at
these early educational levels (e.g., Battista & Clements, 1996; Guay
& McDaniel, 1977; Gunderson et al., 2012).

These results collectively highlight the need for research on how
teachers’ spatial skills influence teachers’ practice and students’ learn-
ing. Students develop spatial skills in part through environmental
factors such as spatially demanding activities in the classroom and
everyday life (see Uttal et al., 2013, for a meta-analysis). However,
students may have fewer learning opportunities if their teachers are
reluctant about including spatial activities in the curriculum or are
ineffective at teaching such activities. Consistent with this hypothesis,
Otumfuor and Carr (2017) found that middle school teachers’ spatial
skills were related to their use of representational gestures and peda-
gogical content knowledge during geometry instruction, a spatially
demanding STEM subject. Furthermore, one prior longitudinal study
found that first- and second-grade children improved less in their
mental rotation skills if their teachers had higher spatial anxiety
(Gunderson et al., 2013), although this study’s claims are limited by
its nonexperimental design.

Research centered on teachers’ skills and attitudes could identify
ways to help teachers overcome obstacles in implementing spatial
activities in the classroom. For instance, one longitudinal study found
that primary school teachers’ spatial anxiety decreased after teachers
attended a professional development workshop focused on approaches
for teaching spatial skills (Ping et al., 2011). In this workshop,
teachers learned about laboratory research on spatial development and
collaborated with researchers to design spatial classroom activities
appropriate for primary schoolchildren. Teachers’ spatial anxiety, but
not reading or mathematics anxiety, decreased one year after attending
this workshop. Future experimental research should investigate
whether such workshops and other related interventions (e.g., Sorby,
2009) could improve teachers’ spatial skills and, by extension, also
improve students’ spatial skills and STEM learning.

Limitations

Because our study represents data from the 1960s and 1970s, our
findings might not generalize to current teachers. Although some
teachers in Project TALENT may still be teaching in classrooms
today, changes in contextual factors such as teacher education require-
ments may have caused teachers’ cognitive profiles to change over
time. Another limitation in our research was that spatial skills were
only measured when participants were high school students. This
longitudinal design allowed us to investigate if spatial skills predicted
later occupational choices. However, further education or other expe-
riences might have caused the cognitive profiles of these individuals
to change from high school to the time of their employment as
teachers. To address these limitations, future research should directly
assess the spatial skills of practicing teachers who more recently
completed their teaching certifications.

Implications

Our findings highlight the need to examine how teachers’ spatial
skills influence the development of students’ spatial skills. Although
required to teach STEM content (National Research Council, 2012;

Tu, 2006), preschool and primary teachers have relatively weak
spatial skills compared to college graduates and other teachers. Teach-
ers with weaker spatial skills may be more reluctant or find it more
challenging to implement spatial tasks in their classrooms, depriving
their students of valuable learning opportunities (Otumfuor & Carr,
2017). This possibility would be problematic because spatial skills are
teachable (Uttal et al., 2013) and are crucial to learning and future
success in STEM disciplines (e.g., Casey, Nuttal, Pezariz, & Benbow,
1995; Shea et al., 2001). If teachers’ spatial skills affect students’
learning, investigating how to improve teachers’ skills may provide
novel ways to boost students’ performance in STEM disciplines.
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