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This meta-analysis, spanning 5 decades of Draw-A-Scientist studies, examined U.S. children’s gender-science
stereotypes linking science with men. These stereotypes should have weakened over time because women’s
representation in science has risen substantially in the United States, and mass media increasingly depict
female scientists. Based on 78 studies (N = 20,860; grades K-12), children’s drawings of scientists depicted
female scientists more often in later decades, but less often among older children. Children’s depictions of sci-
entists therefore have become more gender diverse over time, but children still associate science with men as
they grow older. These results may reflect that children observe more male than female scientists in their envi-
ronments, even though women’s representation in science has increased over time.

Adults in many nations associate science with men
much more than with women (e.g., Miller, Eagly, &
Linn, 2015; Smyth & Nosek, 2015). To investigate
the origins of these associations, researchers have
studied children’s perceptions of scientists over sev-
eral decades. For instance, children were asked to
draw a scientist in a landmark study of nearly
5,000 elementary school students who were mostly
from the United States and Canada (Chambers,
1983). The drawings, collected from 1966 to 1977,
almost exclusively depicted male scientists, often
with lab coats, eyeglasses, and facial hair, working
indoors with laboratory equipment. Only 28 chil-
dren drew a female scientist (0.6% of the sample),
suggesting strong gender-science stereotypes link-
ing science with men. This limited view of scientists
might have restricted children’s science-related edu-
cational and career aspirations, to the extent that
children did not identify with such depictions.

Since Chambers (1983) collected data in the
1960s and 1970s, however, women’s representation
in science has risen substantially in the United

States. For instance, women earned 19% of U.S.
chemistry bachelor’s degrees in 1966 but 48% of
such degrees in 2015 (National Science Foundation,
2017). Female scientists are also now more often
depicted in popular children’s television shows
(Long et al., 2010), science textbooks (Pienta &
Smith, 2012), magazines such as Highlights for Chil-
dren (Previs, 2016), and other mass media products
(Steinke, 2013).

We studied how children’s gender-science
stereotypes have changed over 5 decades by meta-
analyzing the expansive literature of U.S. Draw-
A-Scientist studies. Individual studies are often
uninformative in studying cultural change because
they typically include only one point in time or one
cohort. Meta-analytic methods, however, can over-
come this limitation by comparing children across
multiple decades. Moreover, this drawing task has
been widely administered in grade levels varying
from early elementary school to late high school,
allowing us to study both developmental and his-
torical change in the same meta-analysis.
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Gender-Science Stereotypes Across Development
and Historical Time

Development in Childhood

Theories from developmental psychology (e.g.,
Bigler & Liben, 2007; Cvencek & Meltzoff, 2015;
Martin & Ruble, 2004) and social psychology
(e.g., Eagly & Wood, 2012; Fiske, Cuddy, Glick, &
Xu, 2002; Wood & Eagly, 2012) provide a frame-
work for understanding how gender-science stereo-
types develop. In general, stereotypes about social
groups form based on people’s direct observations
of group members, such as through social interac-
tions, and indirect observations, such as through
mass media (Bigler & Liben, 2007; Koenig & Eagly,
2014). Because gender is a particularly salient social
identity, children actively search their environment
for cues to what activities are considered appropri-
ate for boys and girls (Arthur, Bigler, Liben,
Gelman, & Ruble, 2008; Martin & Ruble, 2004).

Although some gender stereotypes start to form
as early as toddlerhood, the stereotype of scientists
as male should emerge somewhat later because
preschoolers likely have limited knowledge of scien-
tists (Lee, 2010; Newton & Newton, 1992, figures 1,
2). Formal science instruction is sporadic in early ele-
mentary school and often does not begin systemati-
cally until late elementary school to middle school
(Smith, Banilower, McMahon, & Weiss, 2002). Dur-
ing formal science instruction, children could form
gender stereotypes about science and mathematics
partly based on teachers’ attitudes and beliefs, as
some correlational studies have suggested (Keller,
2001; for a review, see Gunderson, Ramirez, Levine,
& Beilock, 2012). As children grow older, their
opportunities for learning stereotypes about scien-
tists also expand beyond school. For instance, middle
school children have reported basing their drawings
of scientists on media sources such as television
shows, movies, books, and magazines (Fort & Var-
ney, 1989; Steinke et al., 2007). These mass media
products have usually depicted many more male
than female scientists, at least in prior decades (for a
review, see Steinke, 2013). Children may then learn
to associate science with men as their exposure to
male scientists accumulates during development. We
therefore predicted that older children in our meta-
analysis would draw male scientists more often than
younger children.

Change Over Time

Even in recent decades, children would likely
learn to associate science with men because women

remain underrepresented in many science and engi-
neering fields (Ceci, Ginther, Kahn, & Williams,
2014). However, women’s representation in science
has also increased substantially in the United States
over the past 5 decades (Miller & Wai, 2015). For
instance, from 1960 to 2013, the percentage of
women among employed U.S. scientists rose from
28% to 49% in biological science, 8% to 35% in
chemistry, and 3% to 11% in physics and astron-
omy (Hill, Corbett, & St. Rose, 2010, figure 11;
National Science Board, 2016, appendix table 3–12).
Furthermore, female scientists are now depicted
more often in children’s media. For instance,
women and girls were 13% of images of people in
science feature stories in the popular magazine
Highlights for Children in the 1960s, but this percent-
age rose to 44% by the 2000s (Previs, 2016). Like-
wise, women and girls were 39% of images of
scientists in children’s nonfiction trade books pub-
lished in 1991–2011 (Rawson & McCool, 2014), 44%
of images of scientists in middle school science text-
books published in 2008 (Pienta & Smith, 2012),
and 42% of scientist characters in television pro-
grams popular among middle school-age children
in 2006 (Long et al., 2010).

Given this increased representation of female sci-
entists, children might learn to associate science
with both men and women. Exposure to female sci-
entists might also weaken already-formed associa-
tions of science with men (Farland, 2006; Galdi,
Cadinu, & Tomasetto, 2014; Gonzalez, Dunlop, &
Baron, 2017), especially if students identify with the
female role models (Young, Rudman, Buettner, &
McLean, 2013). Consistent with these hypotheses,
women’s representation among science majors and
employed researchers predicted weaker national
gender-science stereotypes across 66 nations in one
large study (Miller et al., 2015). Hence, children’s
stereotypes should partly reflect changes in
women’s representation in science over time. We
therefore predicted that U.S. children would draw
male scientists less often in later than earlier dec-
ades. Our meta-analysis focused on U.S. samples to
test this hypothesis because no other nation had
enough relevant Draw-A-Scientist studies of chil-
dren to allow examination of cultural change over
several decades.

The Present Meta-analysis

In summary, our main hypotheses were that
stereotypes linking science with men would
strengthen with children’s age, but weaken over
time in the United States. The wide array of Draw-
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A-Scientist studies, which include data dating back
to the 1960s, allowed us to investigate classic ques-
tions in developmental science about age and per-
iod effects. This literature also provided a unique
opportunity to compare studies on a common met-
ric (i.e., percentage of male scientists) because all
studies administered the same task. In contrast,
other meta-analyses typically include studies with
many different measures that might not always be
meaningful to compare in analyses.

Several features of the Draw-A-Scientist Test
should be noted from the outset (see Finson, 2002
for a review). First, like other indirect measures of
children’s attitudes and beliefs, the Draw-A-Scien-
tist Test did not require children to consciously
report their stereotypes with an introspective verbal
response (Cvencek & Meltzoff, 2015). The indirect
nature of this task can be advantageous in develop-
mental research because children may first learn
stereotypes implicitly before reporting them explic-
itly (Galdi et al., 2014).

Second, as prior research suggests, children typi-
cally draw more male than female scientists
because they associate science with men and not
because they generally draw males regardless of
occupation. For instance, one study asked 206 ele-
mentary school children to draw a scientist, a vet-
erinarian, and a teacher (Losh, Wilke, & Pop, 2008).
Among drawings in which sex could be deter-
mined, 66% of scientists were male, compared to
40% of veterinarians and 25% of teachers. In other
words, children drew more males than females only
for scientists, but not for the two other occupations
in which women’s workforce representation was
higher. These results suggest that these drawings at
least in part reflect children’s associations between
sex and occupations.

Finally, these drawings may also partly reflect
aspects of children’s own personal identities. For
instance, tasks asking children to draw a generic
person have often been interpreted as projective
measures of children’s self-expression and gender
identity (Arteche, Bandeira, & Hutz, 2010). Consis-
tent with this hypothesis, when asked to draw a
person, usually 70% or more of both boys and girls
have drawn their own sex in prior studies (Arteche
et al., 2010; Picard, 2015). Given these results, we
predicted that boys in our meta-analysis would
draw male scientists more often than girls. This
mean difference between boys and girls, however,
was not central to our main research goals. Instead,
our analyses that considered children’s sex focused
on investigating if change over age and historical
time was present for both boys and girls.

Method

Literature Search and Inclusion Criteria

We searched for the phrases “draw a scientist”
OR “draw-a-scientist” in 15 databases of published
literature (e.g., ERIC, PsycINFO, Web of Science);
see Table S1 for the list of databases. We also sys-
tematically searched for unpublished studies using
ProQuest Dissertations & Theses Global and Google
Scholar. Google Scholar was especially helpful
because it searches many sources such as university
websites for unpublished studies (see https://schola
r.google.com/intl/en/scholar/inclusion.html). Pro-
Quest yielded 317 dissertations and theses and,
using the full text search option, Google Scholar
yielded 1,890 results. We examined all articles that
these 17 databases had indexed by the time we com-
pleted our latest keyword searches in March 2017.
Using five citation databases (Academic Search
Complete, Google Scholar, PsycINFO, Scopus, and
Web of Science), we also examined all articles that
cited at least one of the following: (a) Chambers’
(1983) landmark study, (b) a widely cited narrative
review of Draw-A-Scientist studies (Finson, 2002),
or (c) at least one of the other articles that ultimately
became part of our sample. Search results were
imported into EndNote X8, and duplicates were
deleted, yielding 3,042 unique references.

From these references, we included studies that
met all the following criteria: the study (a) reported
a sample of U.S. K-12 children, (b) asked these chil-
dren to draw a scientist, (c) reported sufficient
information to record the number of male and
female scientists drawn, and (d) had a sample size
of at least 10 drawings. We aimed to study natural-
istic change over historical time and therefore
wanted to estimate children’s baseline stereotypes
in the absence of study-specific educational or
experimental interventions. Consequently, for pre-
post and other longitudinal designs, studies were
included only if they reported data separately for
the first occasion in which children drew scientists.
For posttest-only experimental or quasi-experimen-
tal designs, studies were included only if they
reported data separately for the control condition
or found no significant differences across conditions
if data were reported aggregated across conditions.

Applying these inclusion and exclusion criteria
identified 93 eligible articles (see Appendix S1 for
details on the process for determining eligibility and
Appendix S2 for the list of articles). For a sample
reported by multiple sources (e.g., in a dissertation
and later journal article), we examined all articles for
relevant information but created only one row of
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data for that sample, yielding 79 independent sam-
ples. Almost half of these studies (47%) were unpub-
lished, indicating that our search methods were
effective at finding large amounts of relevant gray
literature (see Table S2 for the sources of unpub-
lished and published studies). Appendix S3 details
the coding system that we used to record modera-
tors such as data collection year and average age.

Meta-analytic Procedures

Effect Size Calculations

The main outcome variable was the percentage
of male scientists among sex-identifiable drawings.
When applicable, we recorded the percentage of all
drawings depicting scientists of both sexes or inde-
terminate sexes (e.g., the drawing only contained
stick figures with no sex cues such as long hair)
and included that percentage as a moderator in
multivariable analyses. We converted percentages
to log odds for statistical analysis. This conversion
presented challenges for samples (often boys) that
drew only male scientists because the logs odds
would be infinite. In those cases, we added 0.5 to
both cells (female and male counts), consistent with
standard practice regarding continuity corrections
for log odds (Viechtbauer, 2010).

Statistical Models

Our focal analyses used mixed-effects
meta-regression models that assumed that observed
variation in effect sizes was due to fixed effects of
moderators (e.g., year of data collection), random
effects of residual between-study heterogeneity, and
within-study sampling variance (Borenstein, Hedges,
Higgins, & Rothstein, 2009). Mixed-effects and ran-
dom effects models were chosen over fixed effects
models because we wanted to model heterogeneity
of effect sizes and make inferences to a larger popu-
lation of U.S. children (Hedges & Vevea, 1998).
Between-study heterogeneity was quantified by pre-
senting 90% credibility intervals (a measure of the
estimated dispersion of true underlying effects) and
I2 statistics (percentage of total variation in effect size
due to heterogeneity rather than chance). These
models were estimated with the metafor R package
using restricted maximum likelihood estimation and
the Knapp–Hartung adjustment to account for
uncertainty in estimating heterogeneity (Viechtbauer,
2010). Although inferential statistical models ana-
lyzed log odds, we converted model outputs back

into more intuitive percentages when presenting
descriptive statistics (e.g., regression trendlines).

Publication Bias

Our analyses tested for publication bias in sev-
eral ways, including comparing average effects esti-
mated by published versus unpublished studies
and testing for asymmetry in the funnel plot of
observed effect size plotted by sample size (Boren-
stein et al., 2009). We also tested for change over
time in publication bias by including interaction
terms with data collection year in relevant meta-
regression models (see Appendix S4 for details). In
addition, we computed estimates of mean effect
size and change over time adjusted for small-study
effects (e.g., mean effect size differing as a function
of sample size). Publication bias can be one source
of small-study effects. Hence, adjusting for small-
study effects using meta-regression models pro-
vides one way to correct for publication bias (Stan-
ley & Doucouliagos, 2014; though see Simonsohn,
2017 for critique of this assumption; see Appendix S4
for details).

Outliers

Chambers’ (1983) original study was an outlier in
terms of its data collection years (1966–1977); all
other studies collected data in 1985 or after. That
study was therefore unique in estimating children’s
gender-science stereotypes during a period in which
women’s representation in U.S. science was espe-
cially low. However, Chambers’ large effect size
(99.4% of drawings were male scientists) and sample
size (N = 4,807) could have also disproportionately
influenced regression analyses. We therefore
repeated all analyses both including and excluding
Chambers’ study. Appendix S5 details how we iden-
tified outliers other than Chambers (1983) using vari-
ous diagnostics (e.g., studentized deleted residuals)
developed for outlier detection in random effects and
mixed-effects meta-regression models (Viechtbauer
& Cheung, 2010). For reasons detailed in Appendix
S5, one outlier (Cavallo, 2007) was excluded from all
analyses and another outlier (Flick, 1990) was
excluded from analyses of boys’ drawings.

Results

Our analyses addressed two main research ques-
tions: (a) How do gender-science stereotypes vary
across age and historical time? (b) Do the predicted
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effects of age and time remain after accounting for
each other and other moderators? Of the 78 ana-
lyzed studies, 30 studies reported data separately
for boys and girls, and 11 studies included only
girls. No study included only boys. We therefore
conducted separate meta-analyses for all children’s
drawings (k = 78 studies; N = 20,860 sex-identifi-
able drawings), girls’ drawings (k = 41; N = 6,730),
and boys’ drawings (k = 29; N = 5,941). The Sup-
porting Information contain the data files and R
code needed to reproduce all analyses including fig-
ures and tables. These materials have also been
uploaded to the Open Science Framework (https://
osf.io/3awvj/).

All Drawings

Distribution of Effect Sizes

Children overall drew 73% of scientists as male,
95% CI [69, 77], averaged across all 78 analyzed
samples using random effects weighting; this per-
centage was 72% excluding Chambers (1983). How-
ever, effect sizes also varied widely across studies
(s2 = 0.698; p < .0001). The middle 90% of true
underlying effects (i.e., 90% credibility interval)
were estimated to fall within 41%–92%. Further-
more, most variability in observed effect sizes could
be attributed to between-study heterogeneity rather
than chance (I2 = 96%), suggesting that moderators
(e.g., age, year) may help explain differences in
observed effect sizes.

Simple Regression Analysis

Children drew male scientists less often in later
than earlier decades (see Figure 1a). Children drew
99.4% of scientists as male in Chambers’ (1983)
study (data collection years 1966–1977) compared
to 72% on average in later studies (years 1985–
2016). The regression coefficient for data collection
year was significant (b = �.040; p = .0004). How-
ever, when Chambers’ study was excluded from
analysis, the regression coefficient was 51% smaller
in magnitude (b = �.020) and the p value was .062
(see also the dashed line in Figure 1a). In other
words, the clearest evidence of change over time
came from analyses that used data from the 1960s
and 1970s (i.e., Chambers’ study).

In addition, older children drew male scientists
more often than younger children (see Figure 1a),
both when including Chambers’ (1983) study
(b = .098; p = .023) or excluding it (b = .136;
p < .0001). However, as also shown in Figure 1b,

the age effect was smaller in magnitude when
Chambers’ study was included (see solid line) than
excluded (see dashed line) because its large effect
size was unexpected based on the young average
age of children in it (8.26 years). Given Chambers’
(1983) outlying data collection years (1966–1977),
we considered analyses excluding Chambers to be
more appropriate estimates of average age effects in
contemporary U.S. data. The mean percentage of
male scientists did not significantly differ from 50%
until age 8 when excluding Chambers and age 7
when including Chambers.

Multivariable Regression Analysis

Multivariable meta-regression models tested
whether the predicted effects of average age and
data collection year remained after controlling for
each other and three other moderators: (a) percent-
age of drawings with scientists of indeterminate sex
(see Effect Size Calculations in the Methods section
for more details), (b) dummy code for publication
status (0 = unpublished, 1 = published), and (c)
dummy code for an all-female sample (0 = mixed-
sex, 1 = all-female). This multivariable analysis
helped address potential confounds between predic-
tors (see Table S3 for the correlation matrix). For
instance, the regression coefficient for age estimated
comparisons between younger and older children,
holding constant other moderators such as data col-
lection year (e.g., 8-year-olds in 2010 vs. 14-year-
olds in 2010).

When controlling for other moderators in multi-
variable models, the age effect remained significant
both when Chambers’ (1983) study was included
(b = .084; p = .024) or excluded (b = .119; p < .0001).
In the same multivariable models, the historical
time effect remained significant when Chambers
was included (b = �.037; p = .0004), but not when
excluded (b = �.013; p = .124). Table 1 summarizes
these age and time effects and Table S4 provides
the complete multivariable models. Compared to a
model with no moderators, between-study hetero-
geneity was reduced from 0.698 to 0.463 in a multi-
variable model including Chambers (R2 = 34%) and
0.392 to 0.226 in a multivariable model excluding
Chambers (R2 = 42%).

One concern about cross-sectional age
comparisons is the confound with birth cohort (e.g.,
8-year-olds in 2010 were born later in time than 14-
year-olds in 2010). For instance, younger children
might have drawn fewer male scientists than older
children in the same data collection year because
younger children were born and grew up later in
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historical time. In other words, the estimated effect
of age might not represent developmental change
but instead a confound with birth cohort. However,

this alternative explanation was unlikely because
the magnitude of the age effect was much greater
than the historical time effect (see Table 1 to
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compare regression coefficients). For instance, based
on data from the 1980s and onwards (i.e., models
excluding Chambers, 1983), the mean percentage of
male scientists changed from 54% to 82% between
ages 6 and 16 (1 decade), but only changed from
74% to 70% between years 1995 and 2005 (also 1
decade); see Figure 1. In other words, change over
age happened more rapidly than what historical
change would alone predict. These results were
therefore consistent with rapid change over chil-
dren’s development in addition to slower change
over historical time.

Sex-Specific Analyses

We repeated analyses for girls’ drawings (k = 41)
and boys’ drawings (k = 29) separately. Many stud-
ies (k = 37) included both girls and boys but did
not report data on the drawn scientists’ sex sepa-
rately by children’s sex. Those 37 studies were
excluded from the following analyses. In other
words, sex-specific analyses used a subset of the
full sample of 78 studies. Results could have dif-
fered from the prior analyses in part for this reason

(e.g., the historical time effect could have been
stronger in the subset of studies that reported data
separately for boys and girls). The exclusion of
those 37 studies also meant the following analyses
had reduced statistical power.

Distribution of Effect Sizes

Girls on average drew 58% of scientists as male,
95% CI [50, 66], but boys drew a much higher per-
centage (96%) of scientists as male, 95% CI [93, 97].
These mean percentages were 55% and 95%, respec-
tively, when excluding Chambers (1983). Boys drew
only male scientists in more than half of the sam-
ples of boys’ drawings (15 of 29 samples). Between-
study heterogeneity was also large and significant
for both girls (s2 = 1.031; p < .0001; I2 = 96%; 90%
credibility interval [21, 88]) and boys (s2 = 1.027;
p < .0001; I2 = 80%; 90% credibility interval [80,
99]).

Historical Time and Age Effects

Both girls and boys tended to draw male scien-
tists less often in later than earlier decades (see Fig-
ure 1). For instance, girls drew 98.8% of scientists
as male in Chambers’ (1983) study compared to
55% on average in later studies. The historical time
effect was generally significant in both simple and
multivariable models for girls and boys (see
Table 1). The exceptions to this rule were the multi-
variable models excluding Chambers for girls
(p = .051) and boys (p = .092). The time effects were
larger in magnitude when including Chambers (see
Table 1).

In addition, both girls and boys tended to draw
male scientists more often with increasing age. This
age effect was significant in all regression models
for girls and boys when Chambers’ (1983) study
was excluded from analysis (ps < .034). However,
when Chambers was included, the age effect was
smaller in magnitude and generally not significant
(see Table 1). As discussed earlier, we considered
analyses based on data from the 1980s and
onwards (i.e., models excluding Chambers) to pro-
vide more appropriate estimates of average age
effects in contemporary U.S. data.

Comparing average percentages on Figure 1
can help interpret the magnitude of these histori-
cal time and age effects. For instance, based on a
simple meta-regression model excluding Cham-
bers, girls on average drew 30% of scientists as
male at age 6 (early elementary school; see Fig-
ure 1d). However, girls switched to drawing more

Table 1
Meta-Regressions Estimates of Historical Time and Age Effects

Predictor

Including
Chambers

Excluding
Chambers

b p b p

Data collection year
Full sample (simple) �.040 < .001 �.020 .062
Full sample (multivariable) �.037 < .001 �.013 .124
Girls only (simple) �.063 < .001 �.034 .028
Girls only (multivariable) �.059 < .001 �.024 .051
Boys only (simple) �.084 .003 �.058 .035
Boys only (multivariable) �.081 .004 �.044 .092

Average age
Full sample (simple) .098 .023 .136 < .001
Full sample (multivariable) .084 .024 .119 < .001
Girls only (simple) .127 .065 .195 < .001
Girls only (multivariable) .125 .032 .187 < .001
Boys only (simple) .193 .067 .252 .003
Boys only (multivariable) .107 .246 .182 .034

Note. The left and right columns display regression coefficients from
models including and excluding Chambers (1983) landmark study,
respectively. Simple regression models included only one predictor
(i.e., data collection year or average age), but multivariable models
controlled for data collection year, average age, and other predictors
simultaneously (see Table S4 for the complete multivariable models).
The unstandardized regression coefficients (bs) are the predicted
change in log odds of drawing male scientists per unit increase in the
predictor variable. The unit for age and data collection year was the
same (i.e., 1 year), meaning that their coefficients can be directly com-
pared to contrast the magnitude of age and historical time effects.
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male than female scientists between the ages of 10
and 11 (fifth grade; end of elementary school). By
age 16 (high school), girls on average drew 75% of
scientists as male. In contrast, for boys, the mean
percentage of male scientists changed from 83% to
98% between ages 6 and 16, excluding Chambers
(see Figure 1f). The magnitude of historical time
and age effects did not significantly differ by chil-
dren’s sex (see Appendix S6).

Supplemental Analyses

The Supporting Information details the results
for supplemental analyses including those regard-
ing publication bias (see Appendix S4), the within-
study effect of age (Appendix S7), and outcomes
other than scientists’ sex such as the presence of
laboratory coats (Appendix S8). We briefly summa-
rize the results of these supplemental analyses here.

Publication Bias

Funnel plot analyses provided no evidence of
publication bias or change over time in publication
bias (ps > .26; see Figure S1 for the funnel plot).
Published and unpublished studies also did not sig-
nificantly differ in mean effect size (ps > .50), but the
difference between published and unpublished stud-
ies changed over time (see Appendix S4 for details).
The evidence for change over time in publication
bias was therefore inconsistent because the difference
between published and unpublished studies changed
over time, but funnel plot asymmetry did not.

In addition, we computed estimates of mean
effect size and change over time adjusted for small-
study effects using meta-regression models that
extrapolated to a hypothetical set of studies with
infinite sample size (see Appendix S4 for details).
The adjusted historical time effect was significant
when including Chambers’ (1983) study (b = �.049;
p = .0008), but not when excluding it (b = �.016;
p = .273); see Table S5. These results reinforce the
earlier conclusion that the evidence for change over
time was robust when including Chambers but ten-
tative when excluding Chambers.

Within-Study Effect of Age

Thirteen studies reported data disaggregated by
age cohort, allowing us to estimate age effects
based on within-study comparisons (i.e., younger
vs. older children within the same study). Using
hierarchical dependence models (see Appendix S7

for details), we found that that older children drew
male scientists more often than younger children,
even among children within the same study,
demonstrating the robustness of age effects for this
literature.

Other Outcomes

Analyses examining outcomes other than the sci-
entist’s sex (e.g., presence of laboratory coats) found
that older children more often than younger chil-
dren drew scientists with laboratory coats (b = .195;
p = .008) and eyeglasses (b = .185; p = .0002). In
addition, children in later decades also drew scenes
that were indoors or in a laboratory less often than
children in earlier decades (see Appendix S8 or Fig-
ure S2 for more details). Based on random effects
weighting, 50% of drawn scientists had laboratory
coats, 38% had eyeglasses or goggles, 78% were
indoors or in a laboratory, 18% were middle-aged
or older, and 79% were Caucasian on average.

Discussion

This meta-analysis provides the first systematic,
quantitative review of studies that have adminis-
tered the Draw-A-Scientist Test. By combining 78
studies including over 20,000 children, we found
changes in children’s gender-science stereotypes, as
reflected in their drawings of scientists. Consistent
with our main hypotheses, the tendency to draw
male scientists increased with children’s age but
decreased over historical time in the United States.
In addition, boys drew male scientists more often
than girls. These findings provide insight into how
children learn to associate science with men and
how children respond to changes in their cultural
environment such as increases in women’s repre-
sentation in science.

Change Over Children’s Age

Results suggested children did not associate
science with men until grade school. When children
started kindergarten at ages 5–6, they drew roughly
equal percentages of male and female scientists,
averaged across boys and girls. Children did not
draw significantly more male than female scientists
until ages 7–8. In contrast, some stereotypes such as
those about gender and household chores first
emerge much earlier in development including as
early as ages 2–3 (Martin & Ruble, 2010). Children
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may gain knowledge of some occupations such as
babysitter and firefighter even in preschool. How-
ever, consistent with our findings, children’s knowl-
edge of scientists likely develops later as they
encounter science in school and in the media.

During elementary and middle school, the ten-
dency to draw male scientists increased rapidly
with age. When children started high school at ages
14–15, they drew more male than female scientists
by an average ratio of four to one. The tendency to
draw scientists with laboratory coats and eyeglasses
also increased with age, suggesting that children
learn multiple stereotypes about scientists as
children mature (Finson, Beaver, & Cramond, 1995).
These age-related increases are consistent with
children gaining more exposure throughout devel-
opment to male scientists dressed in archetypal
laboratory attire.

Change Over Time

The strongest evidence for change over time came
from analyses that included data from the 1960s and
1970s (i.e., Chambers, 1983). Less than 1% of children
drew a female scientist in Chambers’ landmark study
(data collection years 1966–1977), but that percentage
rose to 28% on average in later studies (data collec-
tion years 1985–2016). The historical time effect was
robust in all regression models including Chambers’
study (ps < .005 in all six models). Even within stud-
ies conducted after Chambers’, children tended to
draw female scientists more often over time, but this
trend was less clear (e.g., the p value was .062 in the
simple regression model including all studies except
Chambers). In other words, U.S. children have
drawn more female scientists since the 1960s and
1970s, but the evidence for change within later dec-
ades is tentative.

These findings suggest that children’s stereotypes
associating science with men have weakened over
time in the United States, consistent with increases
in women’s representation in science. However,
women also remain underrepresented in several
science fields. For instance, in 2013, women were
49% of biological scientists, 35% of chemists, and
11% of physicists and astronomers in the United
States (National Science Board, 2016, appendix table
3–12). Children may glean information about these
numerical imbalances through multiple sources such
as textbooks, classroom and extracurricular experi-
ences, and extensive media content. Consistent with
this hypothesis, children in recent years still drew
more male than female scientists on average.

Differences by Children’s Sex

Both boys’ and girls’ drawings showed age-
related and historical time-related changes in the
predicted directions, confirming our main hypothe-
ses separately for boys and girls. In addition, boys
drew male scientists much more often than girls.
This sex difference is consistent with these draw-
ings partly reflecting children’s own gender identi-
ties and in-group preferences. Most children have
positive attitudes toward their own sex (Dunham,
Baron, & Banaji, 2015; Halim, Ruble, Tamis-LeM-
onda, Shrout, & Amodio, 2017) and therefore may
draw their own sex as an expression of these atti-
tudes. For instance, when asked to draw a generic
person, usually 70% or more of both boys and
girls draw their own sex (Arteche et al., 2010;
Picard, 2015). Our meta-analysis found similar
results for the youngest children included in
Draw-A-Scientist studies. For instance, based on
data from the 1980s and onwards (i.e., models
excluding Chambers, 1983), 70% of girls and 83%
of boys on average drew their own sex at age 6.
Children at this age may have defaulted to draw-
ing their own sex because they had limited knowl-
edge of scientists (Lee, 2010; Newton & Newton,
1992).

As children grew older, both girls and boys drew
male scientists more often, likely reflecting their
increased gender-science stereotypes. For data from
the 1980s and onwards (i.e., models excluding
Chambers, 1983), girls switched to drawing more
male than female scientists between the ages 10 and
11, roughly corresponding to the end of elementary
school. By age 16, girls drew more male than
female scientists by an average ratio of three to one.
The age-related change for boys was less apparent
in graphs of mean percentages (e.g., Figure 1f)
because boys started at a much higher mean per-
centage of male scientists (e.g., 83% at age 6). Like-
wise, although both boys and girls drew female
scientists more often over time, this historical time-
related change might appear to some readers to be
less dramatic for boys than girls. For instance,
between the years 1985 and 2016, the mean percent-
age of female scientists rose from 33% to 58% for
girls (25% points) and 2.4% to 13% for boys (10%
points), based on data excluding Chambers. How-
ever, differences in baseline rates must be taken in
account when interpreting these changes. For
instance, viewed another way, boys’ likelihood of
drawing female scientists rose by over 400% between
the years 1985 and 2016, which could be considered
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a large change. Hence, interpretation of whether
changes were larger for girls versus boys is partly a
matter of perspective. In fact, the age-related and his-
torical time-related changes tended to be stronger in
magnitude for boys than girls on a log odds scale,
but these differences were not statistically significant.
Most importantly, our main hypotheses about age-
related and historical time-related change were con-
firmed separately for girls and boys.

Methodological Contributions

In addition to providing insight on the develop-
ment of children’s gender-science stereotypes, our
research illustrates how developmental scientists can
use meta-analytic methods to study age and histori-
cal period effects. These effects are often difficult to
study in tandem because age-related differences in
studies can stem from maturational processes or
changes in the sociocultural context in which chil-
dren are reared and observed. The traditional
approach to addressing this issue is to collect longitu-
dinal data, but this approach is limited when study-
ing cultural change because longitudinal studies
often include only one cohort of children. In contrast,
meta-analyses are well suited to simultaneously
investigate developmental and cultural change if the
relevant studies include children of varying ages and
span several decades of data collection.

Meta-analysts adopting this approach, however,
should still be cautious by considering potential
confounds. For instance, our approach for studying
developmental change focused on cross-sectional
age comparisons (e.g., 8-year-olds in 2010 vs. 14-
year-olds in 2010). These cross-sectional compar-
isons controlled for data collection year, but not
birth cohort (e.g., 8-year-olds in 2010 were born
later in time than 14-year-olds in 2010). Comparing
the estimated magnitudes of age and period effects
can help evaluate the potential impact of such con-
founds. For instance, in our meta-analysis, change
over children’s age was much more rapid than
change over data collection year, suggesting that
historical differences in children’s rearing cannot
alone account for the large age effect. In other
words, these results suggested genuine change over
children’s development in addition to slower
change over historical time.

Limitations

Several limitations of our research should be
noted. First, our meta-analysis included only one
measure of children’s stereotypes of scientists (i.e.,

the Draw-A-Scientist Test). Although multiple stereo-
type measures could have provided additional
insight, analyzing a single measure also enabled us
to cleanly compare studies on a simple common
metric (i.e., percentage of male scientists). Including
multiple measures could have presented additional
interpretational challenges because different tasks
may measure different constructs (for an example of
these interpretational issues, see Signorella, Bigler, &
Liben, 1993). Second, our meta-analysis included
only studies from the United States. Our literature
search found some studies from other nations, but
only U.S. research provided enough relevant studies
of children to study change over several decades of
data collection. Investigating differences across
nations was therefore beyond the scope of this meta-
analysis. Third, most studies were convenience sam-
ples, not nationally representative samples. For
instance, several researchers were teachers who
assessed students in their own classrooms (e.g.,
Bohrmann & Akerson, 2001). Differences in local
sample populations could have added extraneous
between-study heterogeneity, making differences
across other study features (e.g., data collection year)
more difficult to observe. However, in defense of
our findings, age-related and historical time-related
differences were still found despite this additional
heterogeneity.

Conclusion and Implications

In summary, the Draw-A-Scientist literature pro-
vided a valuable opportunity to study developmen-
tal and cultural change in the same meta-analysis
and compare studies on a simple common metric
assessing children’s associations of science with
men. Our meta-analysis is the first systematic,
quantitative review of this extensive literature span-
ning 5 decades of data collection. Based on 78 stud-
ies with over 20,000 children, U.S. children’s
drawings of scientists depicted female scientists
more often in later decades but less often among
older children. These results suggest both age-
related and historical time-related changes in chil-
dren’s gender-science stereotypes. The time-related
change was consistent with increases in women’s
representation in U.S. science. However, even in
recent years, children may still learn to associate
science with men because women remain underrep-
resented in some science fields. Consistent with this
hypothesis, children in recent samples still drew
more male than female scientists on average.

Stereotypes linking science with men might limit
girls’ interests in science-related activities and careers,
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as some theories of gender development would pre-
dict (e.g., Hyde, 2014; Martin & Ruble, 2010). For
instance, girls may avoid activities that they consider
appropriate for boys but not girls, as some correla-
tional and experimental studies have suggested (e.g.,
Bian, Leslie, & Cimpian, 2017; Weisgram, 2016). Girls
might also underperform on evaluative tests in male-
stereotyped domains such as mathematics and
science (Galdi et al., 2014; but see also Flore &
Wicherts, 2015, for evidence of publication bias in
this stereotype threat literature). Furthermore, chil-
dren may learn other related traits of scientists that
also limit girls’ science-related aspirations. For
instance, scientists are often seen as agentic (e.g.,
competitive, independent) but not communal (e.g.,
helpful, sociable), which conflicts with traits people
usually associate with women (Carli, Alawa, Lee,
Zhao, & Kim, 2016). This cultural mismatch between
traits associated with scientists and women might
also dampen girls’ interest in science careers (Diek-
man, Steinberg, Brown, Belanger, & Clark, 2017).

Children’s stereotypes of scientists could there-
fore partly shape sex differences in science-related
interests (Gunderson et al., 2012; Hyde, 2014). Girls
in recent years may now develop these interests
more freely because these stereotypes of scientists
have become more androgynous over time. Never-
theless, women remain underrepresented in several
science fields, and information about such imbal-
ances is filtered through multiple sources such as
mass media and social interactions. Children’s
drawings of scientists provide one fruitful way to
study how children integrate information from
these sources to form stereotypes about scientists.
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