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Research Questions 
This synthesis project aims to bring clarity to the mixed findings on how gender stereotypes about STEM 
and verbal abilities first develop and relate to gender gaps in STEM outcomes. We will investigate two 
core research questions, which will be investigated across two sets of statistical analyses (see Figure 1): 

1. How do children’s gender stereotypes about STEM and verbal abilities vary across child 
demographics, cultural contexts, and measures? 

2. Do children’s gender stereotypes about STEM and verbal abilities correlate with motivational 
STEM outcomes? How do these stereotype-outcome correlations vary across key moderators? 

Figure 1. Focus of This Proposed Project (Regions Highlighted in Red) 

  
 
Computing Effect Sizes (“Indices”) 
Meta-Analysis 1: The primary effect size metric for Meta-Analysis 1 will be mean levels of ability 
stereotypes, after transforming the original stereotype scales (e.g., 1–5 range) onto a common scale 
ranging from -1 to 1. Positive values will indicate conventional stereotypes (favoring male STEM ability or 
female verbal ability), and a value of 1 will indicate the maximum possible stereotype mean in that 
direction (e.g., for STEM stereotypes, all children selected the most extreme pro-male endpoint). For 
instance, a value of +0.35 would indicate 35% of the maximum possible pro-male STEM stereotype. This 
rescaling is a variant of the proportion of maximum possible (POMP) scoring method proposed by Cohen, 
Cohen, Aiken, and West (1999), which has been applied in several meta-analyses when the effect metric 
is means rather than mean differences (e.g., Fischer & Chalmers, 2008; Fischer & Boer, 2011).  

 
 

 
 

 
 

CULTURAL FIT STEREOTYPES 

Male > female liking of STEM 

STEM = male; STEM ¹ female 

Gender gaps in motivational 
STEM outcomes 
 

• Confidence 
• Interests and values 
• Educational and career plans 
 
(Exploratory analyses will examine 
test scores and grades.) 

Meta-Analysis 1 

Female > male verbal ability 
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One key advantage of POMP scoring is allowing for separate analysis of means and sample variability. 
For instance, as children age, their ability beliefs might become more consensual (i.e., less variable), 
causing the standard deviation (SD) to decrease. An approach based on standardized means (i.e., 
dividing means by the sample SDs; see Metric 3 in Table 1) would conflate changes in means and SDs. 
As Viechtbauer (2007) cautioned, “the problem with standardized effect sizes is their dependence on the 
amount of variability in the population…two d or g values could be incommensurable if the samples were 
drawn from populations with unequal variances” (p. 59; see also Baguley, 2009; Bond, Wiitala, & Richard, 
2003). In contrast, because POMP scoring uses known features of the scale range as the “standardizer,” 
POMP means and SDs can be separately analyzed (see Metrics 1 and 4 in Table 1). 

Table 1. Effect Metrics for Meta-Analysis 1 (Focal One Highlighted in Blue) 

 1. Raw POMP 2. Log Transform 3. Standardized Mean 4. Log POMP SD 
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Analytic role Main metric Sensitivity test Sensitivity test Supplemental 

Note. M = raw mean, M0 = scale’s midpoint value indicating gender-neutral beliefs, Mmax = maximum possible value 
for conventional stereotypes (e.g., strongest possible pro-male STEM stereotypes), Mmin = minimum possible value 
(e.g., strongest possible pro-female STEM stereotypes), SD = raw sample standard deviation, n = sample size, and   
J = 1 − 3 (4𝑛 − 5) = small-sample bias-correction term for standardized means. These equations assume symmetric 
scales (i.e., distance from neutrality is the same for both scale endpoints), which is a requirement for inclusion in our 
meta-analysis. For Metric 2, the 1 2 divider term is added so that the metric is approximately equal to Metric 1 for 
small stereotype magnitudes (i.e., M is close to M0) based on a first-order linear approximation. The standard error 
formula for Metric 2 was derived using the delta method (e.g., see Cheung, 2015, p. 61-62; mathematical derivation 
for this specific formula is available upon request), and its approximate accuracy was verified based on simulations in 
R. The standard error formula for Metric 3 is based on the unbiased estimator of the variance for one-sample 
standardized means, assuming underlying normally distributed individual-level responses (Viechtbauer, 2007, 
Equation 26). Lastly, the metric for the POMP SD is a variance-stabilizing log transformation plus a small-sample 
bias-correction term, as recommended by Nakagawa et al. (2015). 

A notable limitation, however, of both POMP scores and standardized means is that these metrics may 
still not completely control for methods confounds due to different scale types (e.g., two-alternative forced 
choice measures versus continuous analog scales; Johnson & Eagly, 2014, p. 691; Simms, Zelazny, 
Williams, & Bernstein, 2019). Hence, as detailed later in the Analysis Plan section, we will include dummy 
codes for critical scale type features (e.g., 2 or 3 discrete response options) in all moderator analyses.  

Additional Technical Justification for Meta-Analysis 1 Metric: Because POMP effect sizes are simple 
linear transformations of raw means, the central limit theorem ensures that they will be distributed 
approximately normal across repeated samples of reasonable size (i.e., asymptotically normal), even if 
the underlying individual-level responses are discrete or otherwise non-normal. Simulations run in R 
confirmed that the standard error formula for the POMP metric is accurate within ~1-3% on average for 
even small samples (e.g., n = 20) with underlying bounded responses that are discrete, skewed, 
leptokurtic, platykurtic, or otherwise non-normal (e.g., on a 5-point scale). Hence, this robustness to non-
normal response distributions is therefore one attractive technical property of the POMP metric, especially 
because we will frequently encounter discrete response scales in our meta-analysis.  

In contrast, traditional standard error formulas for standardized mean metrics (of non-dichotomous 
outcomes) almost always assume individual-level continuous, normal distributions (e.g., Hedges & Olkin, 
1985, Chapter 5; Viechtbauer, 2007). Although approaches have been developed for estimating the 
variance of standardized effects for non-normal response distributions (e.g., Chen & Peng, 2015; Kelley, 
2005), these approaches require information not typically reported in primary studies (e.g., bootstrapping, 
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kurtosis values), limiting their practical utility for meta-analysis. When computing the variance of 
standardized effects, the meta-analyst therefore is usually forced to assume the individual-level 
responses are normally distributed (as we do for Metric 3 in Table 1). In contrast, the variance formula for 
POMP means avoids this distributional assumption because of the generality of the central limit theorem. 

An additional technical advantage is that POMP scores will have greater statistical power than 
standardized means (e.g., t-values for differences from 0 will be larger) because the “standardizing” 
denominator term is a known constant (based on features of the response scale) rather than a sample 
estimate with noise (the sample SD). Though the sample SD is still needed to estimate the variance of 
POMP means (or of any sample mean), the effect size itself does not depend on the SD, contributing to 
relatively more precise effect estimates compared to standardized means. 

Sensitivity Analyses for Meta-Analysis 1 Metric: One concern about the raw POMP metric is that the 
scores are bounded from -1 to 1, which might cause moderator analysis models to possibly make out-of-
bounds predictions. To address this concern, we plan to conduct sensitivity analyses with Metric 2 in 
Table 1, which is a log transformation of the raw POMP score that can range from -∞ to ∞ (note that for 
proportions of dichotomous 0/1 responses, this formula reduces to a standard logistic transformation; see 
Cheung, 2015, Equation 3.27; Lesaffre, Rizopoulos, & Tsonaka, 2007). We do not expect any major 
conclusions will be substantially different between Metrics 1 and 2, so we favor Metric 1 as the “primary” 
metric because it is simpler to communicate and interpret. However, we will note in the main manuscript if 
any major results are substantially different (e.g., different in statistical significance), but we otherwise 
plan to present the more detailed results for Metric 2 in supplemental tables and appendices. 

Likewise, we will consider standardized means (Metric 3) as another sensitivity test, but it may yield more 
divergent conclusions because of the confound with differences in variability (beyond those simply due to 
different numeric ranges). Hence, we consider POMP scoring to provide stronger and purer tests of our 
moderator hypotheses about differences in stereotype means.  

Lastly, we will include the log POMP SD (Metric 4) in supplemental, exploratory analyses. We do not have 
strong a priori predictions for analyses of sample variability, but they could nevertheless provide novel 
theoretical insights on how the distributions of children’s stereotypes vary (not just their means). In 
addition, by examining how the “standard” for Metric 3 varies, such analyses could help explain any 
potential discrepancies between results based on POMP scoring versus standardized means. 
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