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THEORY, CONTEXTS, AND MECHANISMS

Heterogeneity in Mathematics Intervention Effects:
Evidence from a Meta-Analysis of 191 Randomized
Experiments

Ryan Williamsa, Martyna Citkowicza, David I. Millera, Jim Lindsaya, and
Kirk Waltersb

aAmerican Institutes for Research, Chicago, Illinois, USA; bWestEd, San Francisco, California, USA

ABSTRACT
Since the standards-based education movement began in the early
1990s, mathematics education reformers have developed and eval-
uated many interventions to support students in mastering more
rigorous content. We conducted a systematic review and meta-ana-
lysis of U.S. PreK-12 mathematics intervention effects from 1991 to
2017 to study sources of heterogeneity. From more than 9,000 pub-
lished and unpublished study reports, we found 191 randomized
control trials that met our inclusion criteria, with 1,109 effect size
estimates representing more than a quarter of a million students.
The average effect size on student mathematics achievement was
0.31, with wide heterogeneity of most effects ranging from �0.60 to
1.23. Two modeling approaches—meta-regression and machine
learning—provided converging evidence that outcome measure type
(researcher-created vs. standardized) and technology delivery (vs.
teacher or interventionist delivery) were predictors of effect size.
Intervention type, intervention length, grade level, and publication
year were also identified as potentially explanatory factors.
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Improving the education of U.S. youth in the disciplines of science, technology, engin-
eering, and mathematics (STEM) is a well-documented, widely endorsed federal policy
priority (Schneider, 2021; White House, 2012). Underlying the advocacy for improved
STEM education is the shared understanding that the numbers of STEM-related jobs
are growing at much higher rates than jobs in non-STEM fields, and this trend is
expected to continue (Fayer et al., 2017). Yet too few young Americans attain postsecon-
dary degrees in STEM fields to meet this demand (Change the Equation, 2015; Langdon
et al., 2011). Learning and applying STEM concepts can also be critically important to
conducting tasks in non-STEM jobs as well as being capable, knowledgeable members
of society (Zollman, 2012).
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Mathematics is a foundation upon which STEM learning takes place. Traditional
PreK-12 instruction in the United States typically teaches children basic math concepts
(e.g., counting, measurement, basic arithmetic) before teaching concepts in the other
STEM fields. Mathematics also provides the language and tools needed for understand-
ing concepts and applications in other STEM fields (Basista & Mathews, 2002;
Frykholm & Meyer, 2002). Improving children’s understanding of mathematics is there-
fore an important goal for policymakers and educators who seek to ensure that
American youth can later attain STEM-related jobs, the domestic supply of which out-
paces the production of qualified graduates (President’s Council of Advisors on Science
and Technology, 2012). Policymakers also emphasize the importance of critical thinking
and analyzing data to a well-rounded civics education (National Center for Education
Statistics, 2020). Hence, mathematical proficiency is also important to developing an
informed, productive citizenry.

Our study responds to these needs through a systematic review and meta-analysis
of randomized controlled trials in U.S. PreK-12 mathematics education between 1991
and 2017. We focus on understanding the heterogeneity of intervention effects, iden-
tifying what types of mathematics intervention work, for whom, and under
what conditions.

Efforts to Improve Student Mathematics Achievement

Current U.S. student achievement in mathematics is lackluster at best. Despite some
improvements between 1990 and 2009 on the National Assessment of Education
Progress (NAEP), scores have plateaued since then and only 24% of students were at or
above NAEP proficiency in mathematics by the time they graduated high school
(National Center for Education Statistics, 2021). The United States ranked 32nd out of
41 industrialized nations for 15-year-olds’ mathematics performance on the 2018
Program for International Student Assessment (Organisation for Economic Co-
operation and Development, 2021). High school students who did not reach Algebra II
were required to take remedial mathematics courses in college (Achieve, 2014). Having
to take remedial mathematics courses in college is a significant barrier to enrolling and
succeeding in STEM-related courses at the university level (Calcagno & Long, 2008).
Thus, the shortages in the STEM workforce represent a more complex, systemic
PreK–16 problem, of which mathematics plays a key role.

Public initiatives have emerged to address this problem, beginning as far back as the
A Nation At Risk report in 1983 (National Commission on Excellence in Education,
1983). The National Council of Teachers of Mathematics (NCTM), for example, pub-
lished two influential sets of standards in 1989 and 1991 that specified more rigorous
content and process standards, curricula, and assessments for prekindergarten through
Grade 12 education in mathematics (NCTM, 1989, 1991). NCTM (2000, 2007) and the
National Research Council (Kilpatrick et al., 2001) continued the push for more rigor-
ous content and process standards in the 2000s, followed more recently by the
Common Core State Standards Initiative (National Governors Association Center for
Best Practices & Council of Chief State School Officers, 2010).
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Educators and policymakers seeking programs or interventions that improve student
outcomes in mathematics education likely ask two fundamental questions: (1) Which
programs are found to produce positive impacts on student outcomes? and (2) Under
what conditions do those programs produce positive impacts? The first question is one
of internal validity (i.e., Can one attribute changes in outcomes solely to the program?),
whereas the second question is one of external validity (i.e., Do the findings generalize
to other settings, outcomes, intervention features, and populations?). The field of educa-
tion research has made significant progress in designing studies that optimally identify
causal effects of programs and policies, exemplified by the Institute of Education
Sciences’ (IES’s) emphasis on high-quality randomized controlled trials (RCTs) during
the past two decades. Work remains on Question 2, identifying the conditions under
which intervention effects vary in mathematics education. Without an understanding of
intervention effect heterogeneity, we know little about conditions and contexts to which
a study’s findings generalize. The issue of generalizability is of utmost importance to the
ultimate consumers of impact studies—practitioners. As much as they might be inter-
ested in whether an intervention showed impacts, they also want to know whether such
findings are relevant to their students and schools. Moreover, the mathematics educa-
tion literature provides abundant evidence for effect heterogeneity, as detailed next.

Indications of Effect Heterogeneity for Mathematics Interventions

Heterogeneity in mathematics intervention effects is often found within primary studies.
For example, in one cluster randomized trial of Kentucky Virtual Schools’ hybrid pro-
gram, researchers found little evidence of a program effect on the mathematics achieve-
ment of Grade 9 students (Cavalluzzo et al., 2012). However, the results of a sensitivity
test revealed that average effects varied by study setting, with an average program
impact estimate of �0.25 standard deviations in nonrural schools and an average impact
estimate of 0.00 standard deviations in rural schools. Another example study evaluated
the effects of the Tier 2 mathematics intervention on Grade 1 and Grade 2 students’
scores on the Texas Early Mathematics Inventories (Bryant et al., 2008). The study
found a statistically significant positive effect for Grade 2 students (b¼ 0.19, p< .05) but
a small and nonsignificant estimate for Grade 1 students (b¼ 0.04, p> .05). The study
also observed that Tier 2 students in Grade 2 benefited more than Tier 1 students in
the same grade. Looking at variation in intervention effects by outcome subtests, the
study found a significant positive effect only for the addition and subtraction combina-
tions subtest (b¼ 0.21, p < .05).

The What Works Clearinghouse (WWC, 2020) also illustrates evidence for heterogen-
eity in mathematics intervention effects. The WWC focuses on reporting average
impacts of specific interventions and educational practices for general student popula-
tions and specific subgroups. For instance, Cognitive TutorVR is a widely used and
studied algebra intervention (Pane et al., 2014). For high school students, the WWC
indicates that effects of this intervention are mixed, with an overall standardized mean
difference effect size of �0.02 (p> .05) across the six intervention reports that met
WWC standards with or without reservations. For middle school students, however,
Cognitive TutorVR had positive results (effect size ¼ 0.39, p< .05) for one study that met
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WWC standards with or without reservations. WWC practice guides also show the lev-
els of evidence supporting practices that might be embedded within interventions, such
as for a recent practice guide on assisting elementary school students struggling with
mathematics (e.g., Fuchs et al., 2021). The WWC’s reporting of study findings allows
for the manual inspection of how effects may vary across populations, but the systematic
examination of intervention effect heterogeneity falls outside of the WWC’s cur-
rent scope.

Meta-analysis—the synthesis of quantitative findings across studies—provides tools to
systematically examine effect heterogeneity. For example, a broad meta-analysis on
teacher coaching programs across different content areas found that effects on teacher
instruction and student achievement were smaller in larger-scale evaluation trials than
smaller-scale trials (Kraft et al., 2018). The authors argued that these differences in aver-
age effects partly stem from the challenges in scaling up promising programs to new
implementation contexts. The results led the authors to suggest ways in which program
developers can approach these scale-up challenges, including training a diverse group of
coaches and building teacher buy-in to implement a program. Meta-analyses on STEM
education have also illustrated effect heterogeneity, including both in STEM broadly and
in mathematics specifically. For instance, one meta-analysis investigated STEM-focused
professional development programs and curricular materials (Lynch et al., 2019). Effects
on student achievement were strongest when new curricular materials were combined
with professional development, when programs focused on teachers’ content knowledge
and pedagogical content knowledge, and when teachers could meet to trouble-shoot
implementation challenges. For mathematics education specifically, meta-analyses have
found various moderators of intervention effects, such as the following examples:

� Treatment duration for mathematics intelligent tutoring systems (smaller effects
for interventions lasting one year or longer; Steenbergen-Hu & Cooper, 2013).

� Student socioeconomic status (SES) for early numeracy interventions (smaller
effects for low-SES students; Nelson & McMaster, 2019).

� Instructional group size for Tier 2 mathematics interventions for students with
mathematics difficulties (larger effects for small groups of two or three students,
relative to one-on-one instruction; Jitendra et al., 2021).

Several meta-analyses have also found larger effects for researcher-generated than
standardized achievement measures (see Wolf, 2021 for an analysis of WWC data and a
broader review across meta-analyses in education), including for meta-analyses of tech-
nology-enhanced mathematics interventions (Li & Ma, 2010), science education inter-
ventions (Taylor et al., 2018), and STEM-focused professional development programs
(Lynch et al., 2019).

Meta-Analytic Framework and Research Questions

Our study aimed to extend the systematic exploration of heterogeneity in mathematics
intervention effects. Related synthesis efforts have typically focused on specific types of
mathematics interventions (e.g., intelligent tutoring systems, professional development)
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or student populations (e.g., students with disabilities, elementary school students).
These meta-analyses provide in-depth findings on specific aspects of PreK-12 mathemat-
ics education, but they provide less insight on how intervention effects across these
areas contrast with each other. To address this limitation, we conducted a broad system-
atic review and meta-analysis of randomized experiments of interventions designed to
improve mathematics learning among U.S. PreK-12 students, including studies pub-
lished between 1991 and 2017.

We used Cronbach’s (1982) UTOS (units, treatments, outcomes, and settings) model
for generalizability as an organizing framework for our study. The UTOS framework
refers to samples or units (Us), interventions or treatments (Ts), outcomes (Os), and
settings (Ss) as features of studies. Primary study researchers are limited in the Us, Ts,
Os, and Ss they can feasibly examine in any specific evaluation. However, researchers
usually want to (implicitly or explicitly) generalize to a wider set of study characteristics
that were not directly studied. In Cronbach’s model, assessing generalizability involves
determining how well a study’s intersection of UTOS characteristics can be extrapolated
to the “domain of application.” Since Cronbach’s initial publication in 1982, several
meta-analysts have found the model a useful framework for calling attention to the key
categories of moderators when examining effect heterogeneity (e.g., Ahn et al., 2012;
Aloe & Becker, 2009; Becker, 2017).

Aloe and Becker (2009) extended the UTOS framework in a meta-analytic context to
include variation due to methodological differences (Ms) in study designs, yielding the
MUTOS framework (see also Becker, 2017). The M category is qualitatively different from
the other categories because it usually represents nuisance variation (e.g., effect size compu-
tation details, variation in design attributes, approaches to measurement). For example, a
randomized controlled trial and a quasi-experimental design could aim to estimate effects
for the same intervention, student population, outcome, and setting, with the only differ-
ence being selection bias. Though selection bias is an important issue to mitigate, research-
ers usually do not otherwise care about it as a substantive feature of the intervention or its
effect on students (other than potentially biasing estimation of the target effect).

The breadth of the MUTOS framework was well suited to our meta-analytic
research questions:

1. How heterogeneous are mathematics intervention effects for U.S. PreK-
12 students?

2. What factors contribute to this mathematics intervention effect heterogeneity?

Method

Our study followed Becker’s (2017) six recommended steps for using the MUTOS
framework to investigate effect heterogeneity in meta-analyses:

1. Identify the desired target of inference by defining the relevant MUTOS
characteristics

2. Code study features using MUTOS
3. Descriptively evaluate the diversity for each component of MUTOS
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4. Assess overall heterogeneity of effects
5. Evaluate empirical variation in effects for each component of MUTOS
6. Assess connections, or generalizability, to desired domain of application

The first three steps correspond to our systematic review to identify eligible studies,
code their study characteristics, and conduct a descriptive analysis of coding frequencies.
The last three steps correspond to our meta-analysis to use statistical methods to analyze
variation in standardized mean differences, identify specific sources of heterogeneity,
and interpret the results based on key categories relevant to considering study
generalizability.

Systematic Review

Our study started with a systematic review to search for, screen, and code mathematics
intervention studies. Our literature search and retrieval process for our systematic
review of mathematics intervention studies is presented in Figure 1, and our inclusion
criteria is defined in Table 1, corresponding to Step 1 from Becker (2017).

Literature Search
We first conducted electronic database searches of ERIC, Education Source, PsycINFO,
Psychology & Behavioral Sciences Collections, SocINDEX, Academic Search Premiers,
JSTOR, WorldCat, and the NBER Working Papers. The search was limited to English
language–only studies published between January 1991 and August 2017, focusing on
mathematics-related topics in Grades PreK–12 (see the supplemental materials for a
complete list of search terms). We also conducted a gray, or unpublished, literature
search by searching the U.S. Department of Education websites, such as the WWC, and
websites of research organizations, such as Mathematica and the National Research and
Development Center on Cognition and Mathematics Instruction (see the supplemental
materials for a complete list). After removing duplicates, the database and gray literature
searches yielded 9,384 titles.

Screening
We conducted study screening in three stages: (1) title and abstract screening, (2) full-
text screening, and (3) methods screening. Title and abstract screening focused on deter-
mining whether the appropriate interventions, outcomes, and samples were included in
the study (Criteria 1, 3, and 4 in Table 1). Full text screening focused on confirming
that the appropriate interventions, outcomes, and samples were included in the study as
well as determining whether an eligible control group was used, whether the study was
written in English, and whether the study took place in the United States or its territo-
ries (Criteria 1, 2, 3, 4, and 6 in Table 1). Methods screening focused on determining
whether the study used uncompromised random assignment, was free of N¼ 1 con-
founds,1 and whether enough information was provided to calculate an effect size

1N¼ 1 confounds occur when the intervention or comparison group contains only one study unit.
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Figure 1. Mathematics interventions systematic review literature search and retrieval process.
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estimate and variance (Criteria 2 and 5 in Table 1). Rather than screening on study
attrition or baseline equivalence, our approach treated those characteristics as potential
methodological moderators, which are presented in the results below.

Three trained reviewers screened the titles and abstracts of all 9,384 studies. Five
trained reviewers screened the full text of the 2,462 studies that made it to the second
stage. The authors screened for the study methods of the 796 studies that made it to the
third stage. This overall screening process yielded 191 unique randomized controlled tri-
als that met all eligibility criteria, had sufficient information to extract effect sizes, and
had at least one business-as-usual comparison group.2 Training reviewers and authors
included assigning the same set of 10 studies to all reviewers and meeting to discuss any
discrepancies to align on the inclusion criteria. This training took place twice per stage
prior to assigning studies for screening. The second author also met with reviewers
weekly at all stages of screening to prevent screening drift over time.

Studies were dual screened at each stage using a random sampling strategy to con-
tinuously monitor screening and coding deviations from the protocol. Ten percent of
studies were dual screened at the abstract and methods stages, and 30 percent of studies
were dual screened at the full-text stage. Any discrepancies were resolved by one of the
authors. Interrater reliability was 0.77 at the abstract stage, 0.88 at the full-text stage,
and 0.78 at the methods stage. Most discrepancies resulted in an adjudication of exclu-
sion by the authors as reviewers were instructed to err on the side of inclusion.

All screening took place in a Microsoft AccessVR database created for this project.
Reviewers answered questions using the criteria defined in Table 1. A “No” response
from reviewers to any of the questions excluded the study from further review. If the
reviewers responded “Yes” or “Do Not Know” to all questions at a given stage, the study
moved to the next stage. Studies that made it through all three stages of screening made
it to the coding phase.

Table 1. Eligibility criteria.
Criteria

1. Included at least one mathematics intervention, defined as an intervention, strategy, or program designed
specifically to improve the teaching or learning of mathematics. Professional development, curricula, after school
programs, games, and spatial reasoning strategies were all included so long as the goal of the intervention was to
improve mathematics teaching or learning.

2. Conducted a randomized controlled group trial without N¼ 1 confounds.
3. Included a sample of students in Grades PreK–12 in the United States or its territories.
4. Evaluated at least one measure of mathematics learning or knowledge (including measures of acquisition,

maintenance, or achievement).
5. Study provided sufficient information to calculate an effect size and its variance.
6. Written in English.
7. Published in 1991 or later.
8. Included a business-as-usual (BAU) control group.

Note. N¼ 1 confounds occur when the intervention or comparison group contains only one study unit. Criterion 8 was
applied at the analysis stage, after all coding was completed.

2Our broader project coded 282 RCT studies, but this manuscript’s analyses focus on the 191 studies with at least one
business-as-usual (BAU) control group. We excluded 91 studies that had only alternative treatment comparisons (and no
BAU group) due to the complexity and lack of clear methodological guidance on analyzing such studies (e.g., the effect
size could be positive or negative if the choice of the “main” intervention is not clear).
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Coding
As noted earlier, we used the MUTOS framework to guide our approach for coding
study characteristics as potential moderators. We selected codes for each MUTOS cat-
egory by consulting the empirical literature on what study characteristics have yielded
heterogeneous intervention effects, including in individual primary studies or meta-
analyses on student achievement in mathematics or other STEM fields. We also con-
sulted with the study’s mathematics content experts to ensure the selected codes were
theoretically and empirically relevant to our research questions, separately for each
MUTOS category. Additionally, we considered the reporting prevalence of specific study
features, aiming to balance coding comprehensiveness, feasibility, and utility for
final analysis.

Six coders coded the 191 eligible studies, with 10% of the studies being dual coded.
Any coding discrepancies were discussed by the two coders, and, if not resolved, the
second author intervened and made a final decision. The second author met with the
coders weekly to discuss any questions and prevent coding drift over time. We coded
study-level information related to publication and study design; sample characteristics,
such as sample size and demographics; intervention characteristics related to broad type
(i.e., curriculum, pedagogical/instructional, or supplemental time), training, and delivery;
outcome measure information, such as type and domain; setting information, such as
urbanicity and locale; and summary statistics to calculate effect sizes. A copy of the
codebook is included in the online supplemental materials. Table 2 also lists these codes
along with descriptive frequencies.

For the intervention codes developed for this study, we focused on three broad inter-
vention types: curriculum, pedagogical/instructional, and supplemental time. Curriculum
interventions were those where the primary component was an experimental curriculum
of some sort, which could have included traditional classroom, online, blended, or
reform oriented curricular materials. Pedagogical and instructional interventions were
those that focused primarily on improving mathematics instruction, such as professional
development, coaching, and other teacher training interventions. Supplemental time
interventions were those that programs that were intended as “add-ons” to standard
curriculum and instructional activities, such as tutoring, double-periods, afterschool sup-
ports. In cases, where it was unclear which intervention type was the primary interven-
tion type, we consulted with a mathematics content expert to help make the
determination.3

The Access database used for coding had a hierarchical structure such that study-level
information was coded first; followed by the intervention name and corresponding char-
acteristics; then sample and setting information; outcome information; and finally effect
size information. We coded all eligible information, including all interventions, samples,
outcomes, and effects. For example, if a study examined one intervention for two separ-
ate samples for whom they measured three different mathematics outcomes at two time
points (directly after the intervention and follow-up), we coded one intervention page,
two sample pages, three outcome pages per sample, and two effect size pages per out-
come, resulting in a total of 12 effect sizes. If studies reported on both an overall

3We recognize that blended or hybrid intervention types may be important and missing parts of this broad typology
and we reflect on this issue in the limitations section.
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Table 2. Characteristics of 191 included experiments (1,109 effect sizes).
Characteristic m k Mean (SD) Missing (%)

Methods characteristics
Random assignment level
Student 93 547 49% 0%
Teacher/Classroom 67 379 34% 0%
School 33 183 17% 0%
District 0 0 0% 0%

Published journal article 117 764 69% 0%
Attrition
Lowa 45 255 23% 0%
High 10 31 3% 0%
Insufficiently reported to assess 146 823 74% 0%

Sample characteristics
Grade level – – 3.32 (2.93) 4%
Prekindergarten 18 82 8% 4%
Elementary school 112 767 72% 4%
Middle school 63 239 23% 4%
High school 28 85 8% 4%

Demographics
% Male – – 52% (14%) 30%
% Special education – – 20% (28%) 72%
% English language learner – – 22% (24%) 65%
% Economically disadvantaged – – 57% (24%) 58%
% White – – 40% (27%) 41%
% Hispanic – – 25% (23%) 43%
% Black – – 32% (23%) 40%
% Asian – – 6% (10%) 59%

Intervention characteristics
Intervention type
Curriculum 83 443 40% 0%
Pedagogical/Instructional 85 553 50% 0%
Supplemental time 24 113 10% 0%

Intervention content domain
Number sense and arithmetic 90 642 67% 13%
Rational numbers and fractions 39 196 20% 13%
Algebra and prealgebra 57 269 28% 13%
Geometry 42 230 24% 13%
Measurement, data, and statistics 39 214 22% 13%
Calculus and precalculus 1 1 0% 13%

Implementation fidelity
High 41 395 72% 50%
Medium 22 114 21% 50%
Low 9 42 8% 50%

Implementation training
None or not reported 67 376 34% 0%
One-time training 58 353 32% 0%
Infrequent ongoing training 38 193 17% 0%
Frequent ongoing training 30 187 17% 0%

Intervention delivery
Teacher 110 608 55% 0%
Technology 65 375 34% 0%
Interventionist 52 380 34% 0%

Number of hours – – 23.55 (29.92) 30%
<¼1 h 12 63 8% 30%
>1 h and <¼ 4 h 21 89 11% 30%
>4 h and <¼ 20 h 47 390 50% 30%
>20 h 45 235 30% 30%

Number of weeks – – 19.77 (17.91) 6%
<¼1 week 11 61 6% 6%
>1 week and <¼4 weeks 35 180 17% 6%
>4 weeks and <¼18 weeks 59 392 38% 6%
>18 weeks 71 409 39% 6%

(continued)
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mathematics score and subscores, we prioritized including the subscores. However, we
did not code individual items (e.g., when a mathematics score was made up of a single
mathematics problem).

We also used all available sources to code each study. For example, if a study
included a peer-reviewed article, report, and conference abstract, we used all three sour-
ces to code as much information as possible. If discrepancies arose across the sources,
we discussed these discrepancies and generally trusted the peer-reviewed article or sour-
ces with the latest publication date to be the most accurate. We attempted to find all

Table 2. Continued.
Characteristic m k Mean (SD) Missing (%)

Outcome characteristics
Outcome measure content domain
Number sense and arithmetic 92 578 64% 18%
Rational numbers and fractions 40 190 21% 18%
Algebra and prealgebra 61 216 24% 18%
Geometry 47 164 18% 18%
Measurement, data, and statistics 45 157 17% 18%
Calculus and precalculus 0 0 0% 18%

Outcome type
Standardized achievement measure 107 470 42% 0%
Researcher-generated measure 122 637 57% 0%
Course credits/Enrollmentb 2 2 0% 0%

Outcome timing
Midstream during intervention 14 33 3% 0%
Immediate posttest 172 898 81% 0%
Follow-up posttest 42 169 15% 0%
Combination of time periods 4 9 1% 0%

Outcome-intervention alignmentc – – 0.89 (0.27) 24%
Setting characteristics
Urbanicity
Suburban 51 299 45% 40%
Urban 82 482 72% 40%
Rural 39 222 33% 40%

U.S. geographic region
West 35 206 22% 16%
Midwest 30 188 20% 16%
Southwest 41 260 28% 16%
Northeast 51 364 39% 16%
Southeast 64 326 35% 16%

Publication year – – 2010.68 (5.08) 0%
1990s 12 50 5% 0%
2000s 52 290 26% 0%
2010s 127 769 69% 0%

Note. Percentages are based on the frequencies of effect sizes (e.g., 49% of effect sizes were from student-level RCTs,
corresponding to k¼ 547 effect sizes across m¼ 93 studies). Percentages may sum to more than 100% for characteris-
tics that are not mutually exclusive (e.g., a study could be conducted in both rural and urban settings and across mul-
tiple grade levels).
m ¼ number of studies, k ¼ number of effect sizes, Mean (SD) ¼ average percentage for nonmissing values (and stand-
ard deviation for continuous moderators), Missing (%) ¼ percentage of effect sizes that have missing values for that
characteristic (e.g., such as studies reporting a “mathematics achievement” measure without specifying the out-
come domain).
aThe determination of low attrition was based on meeting the optimistic boundary for both low student-level and ran-
domization-level attrition under What Works Clearinghouse Group Design Standards, Version 4.1 (What Works
Clearinghouse, 2020).
bThe course credits/enrollment category was combined with researcher-generated measures at the analysis stage.
cOutcome-intervention alignment was the proportion of overlap between the outcome domains covered in the outcome
measure and the content covered in the intervention. For instance, the score would be 0.50 if the outcome measure
covered number sense and basic operations, but the intervention focused only on number sense.
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relevant sources the included studies. For example, for all WWC intervention reports,
conference abstracts, executive summaries, and errata, we searched for the correspond-
ing journal articles and reports first within our list of studies and, if we could not find a
copy there, we searched the internet. All sources were linked via partial title names and
then double checked manually to ensure proper linking of study sources.

Meta-Analysis

Computing Effect Sizes
We computed effect sizes to provide a common metric for synthesis across studies that
measure outcomes on different scales. Effect sizes encode both the direction and the
magnitude of the relationship between intervention and outcomes (Hedges & Olkin,
1985; Lipsey & Wilson, 2001). Specifically, we computed the standardized mean differ-
ence (SMD) effect size for all mathematics-related outcomes reported in each study. We
used reported summary statistics, including means and standard deviations, t tests, F
tests, v2 tests, regression coefficients, and effect sizes in other metrics to compute the
SMDs.4 The equations for calculating the SMD, or converting other effect size metrics
to the SMD, can be found in Borenstein, Hedges, Higgins, and Rothstein (2009).

We applied two adjustments to the SMDs and their variances. First, we used Hedges’s
(1981) small sample bias correction to the effect size estimate to the account for small
studies. Second, we adjusted the effect size variances for clustering when the level of
random assignment was at the cluster level (e.g., teachers or schools were randomly
assigned to conditions), using formulas provided by Hedges (2007, 2011).

Meta-Analytic Models
Our focal analyses used mixed-effects meta-regression models to investigate sources of
effect heterogeneity. These models assumed that observed variation in effect sizes was
due to fixed effects of moderators (e.g., intervention type), random effects of residual
effect heterogeneity, and within-study sampling variance (Borenstein et al., 2009).
Models were estimated using restricted maximum likelihood with the metafor package
in the statistical software R (Viechtbauer, 2010).

To account for effect size dependencies (i.e., multiple effects per study), we used
robust variance estimation to adjust the standard errors and degrees of freedom for
regression coefficients, using the small-sample correction based on the Satterthwaite
approximation (Tipton, 2015; Tipton & Pustejovsky, 2015) and the clubSandwich R
package (Pustejovsky, 2018). The model specification using the rma.mv() function in the
metafor package accounted for effect size dependencies based on both hierarchical or
multilevel structures (i.e., subsamples nested within studies) and correlated, multivariate
structures (i.e., multiple measures for the same sample). Pustejovsky and Tipton (2021)
describe this approach in more detail (see our script 01_analysis.R for how we imple-
mented this approach; see link below). We assumed a correlation of r ¼ .50 for effect

4Appropriate summary statistics were not always available to calculate SMDs for all effects. We queried authors for the
missing information, which yielded some success in obtaining the necessary data to calculate SMDs. Our response rate
for queries was 42%.
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sizes for multiple outcomes nested within the same sample; sensitivity analyses that var-
ied this assumed correlation parameter showed robustness of the overall mean effect
size, its standard error, and overall heterogeneity estimate, which we operationalized as
the sum of the within- and between-study variance components. As expected, results
showed some sensitivity to the relative partitioning of within-study and between-study
heterogeneity, but this issue did not affect our central analyses which focused on overall
heterogeneity (for further detail, see pages 9–10 and Table S1 in the supplemen-
tal materials).

We used multiple imputations to account for missing moderator data (e.g., missing
racial demographics), as recommended by Pigott (2001; 2012). For imputing missing
data, we used the jomo R package to account for the multilevel structure of the data
(i.e., effects nested within studies; Quartagno et al., 2019) and aggregated results across
80 imputations, accounting for both the within- and between-imputation variance
(Barnard & Rubin, 1999; Pustejovsky, 2017).

The data and code for these analyses available at https://osf.io/f9gud/?view_only=
c97ba1316ff44606b8954d686e4d2d8b.

Interpreting Meta-Analytic Results
We quantified heterogeneity using the model-based variance estimates (summing both
the within- and between-study components) and 95% prediction intervals (i.e., estimated
dispersion of the middle 95% of true underlying effects; Borenstein et al., 2017).5 We
also calculated the estimated percentage of true effects that were positive (greater than
0) or larger than practically important thresholds such as 0.10 or 0.25 standard devia-
tions, as recommended by IntHout et al. (2016) and Mathur and VanderWeele (2019).
We used cluster bootstrapped confidence intervals to quantify uncertainty in the hetero-
geneity estimates and the percentages of effect sizes above certain thresholds. The
10,000 bootstrap iterations sampled at the study level, not the effect size level, to
account for effect size dependencies. We used the boot R package to generate bias-cor-
rected and accelerated confidence intervals (Canty & Ripley, 2020; our analysis script
02_results.R available on the OSF website details our implementation).

We also computed post-estimation conditional means for categorical moderators (i.e.,
covariate-adjusted means for each intervention type, keeping other moderator values
constant). For example, the conditional mean for curriculum interventions represents
the model-predicted mean if the entire sample of effect sizes were about curriculum
interventions while holding the other moderators in the meta-regression model constant
(e.g., level of assignment, standardized vs. researcher-generated measure, intervention
length). These predicted values therefore enable comparison of means while adjusting
for potential confounds. The supplemental materials explain the computation of these
conditional means in further detail.

5The prediction intervals estimated were based on a standard normal distribution: PI ¼ g6s 1:96ð Þ, where g is the
estimated average effect and s is the estimated between-effect standard deviation.
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Model Building Process
In all moderator analyses, we adjusted for potential methodological confounders such as
level of random assignment; attrition; effect size computation details; publication status
(published vs. unpublished); and outcome type (standardized vs. researcher-generated
measure). Although they were not of central theoretical interest, these methods modera-
tors could act as confounders, potentially biasing other moderator results of interest.
Hence, we included them in all mixed-effects models, regardless of their statistical sig-
nificance, as recommended by Tipton, Pustejovsky, and Ahmadi (2019). We had consid-
ered including outcome type (standardized vs. researcher-generated measure) as the part
of the outcomes (“O”) category in the MUTOS framework. However, we decided it is
better positioned as part of the methods (“M”) category because (a) not controlling for
it could confound other moderators of interest (Wolf, 2021) and (b) it primarily reflects
a methodological difference as opposed to a substantive difference like algebra versus
geometry outcomes.

We first ran a mixed-effects meta-regression model with only methods (“M”) moder-
ators. We then ran four separate models, which each included a group of moderators
for each UTOS component in addition to the methods moderators. For example, the
model corresponding to the “O” component of UTOS (i.e., outcomes) included outcome
moderators such as dummy codes for the outcome domain (e.g., algebra assessment)
and timing (e.g., immediate or delayed posttest), in addition to the methods moderators.
From these four models, we selected moderators with p-values less than .10 for inclusion
into a combined model.

Robustness of the MUTOS Model
As an exploratory sensitivity analysis, we also used a machine learning method called
random forests as an algorithmic approach to model building (Breiman, 2001). The
random forest algorithm is a powerful and flexible tool that can outperform simple
linear regression in predicting outcomes, especially when moderators and effect sizes
have complex relationships (e.g., nonlinearities and interactions). The MetaForest R
package adapted this algorithm to the meta-analytic context of investigating which
moderators best predict heterogeneity in effect sizes (van Lissa, 2017). The supple-
mental materials describe our application of this approach in more detail, including
how we “fine-tuned” the random forest model based on van Lissa’s (2020) recom-
mendations. The random forest approach builds on simpler decision tree models
such as Meta-CART (Li et al., 2020) while addressing several of their limitations
such as their instability to slight data variations and tendency to overfit, yielding
improved predictions6 (van Lissa, 2017).

We used this machine learning approach to answer two main questions:

1. How does our linear meta-regression model (guided by the MUTOS theoretical
framework) contrast with a machine learning model (guided by automated algo-
rithms) in predicting effect sizes?

6We also conducted exploratory analyses using the Meta-CART package (Li et al., 2020), but the results indicated worse
predictive performance compared to even standard linear meta-regression models.
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2. To what extent do these two modeling approaches yield similar conclusions
about the most important moderators?

Selective Reporting Bias Analyses
The supplemental materials also detail our analytic approaches to diagnose and adjust
for selective reporting bias (e.g., such as publishing only studies with statistically signifi-
cant, favorable intervention effects). In short, we used three approaches: (a) comparison
of unpublished versus published studies, (b) meta-regression to assess small-study
effects, and (c) selection modeling. Despite the advances in selective reporting analytic
methods, these approaches should be viewed as sensitivity analyses, rather than defini-
tive, bias-corrected, estimates (Carter et al., 2019).

Results

Study Search Results

Using the literature search and retrieval process shown in Figure 1, we found 191
unique RCT studies that had at least one business-as-usual control group. These studies
included more than a quarter million student participants. We extracted 1,109 effects
from the 191 included studies, with a minimum of 1 effect size per study and a max-
imum of 48 (median ¼ 4, mean ¼ 5.76). The multiplicity of effect sizes came from
studies having both multiple samples (median ¼ 2, mean ¼ 2.66) and multiple outcome
measures within a study (median ¼ 2, mean ¼ 2.26).

Descriptive Statistics About Study Characteristics

Table 2 provides summary information about the studies and their coded characteristics,
organized around the MUTOS framework. Regarding methods characteristics, about
half (49%) of effect sizes came from studies with individual-level random assignment,
whereas the other half came from studies with cluster-level assignment of teachers/class-
rooms (34%) or schools (17%). Notably, information about attrition was usually not
reported (74% of the time) in enough detail to assess both student-level and assign-
ment-level attrition rates against the WWC’s (2020) attrition standards.

The included study samples were demographically diverse: 40% of students were
White, 32% were Black, 25% were Hispanic, 6% were Asian, and 57% were economically
disadvantaged (as generally indicated by free or reduced-price lunch status) when those
demographic statistics were reported; percentages were weighted by the number of effect
sizes. However, this demographic information was often not reported (missing data rates
varied from 30% to 72%). The earliest grades among the PreK–12 grade band were
overrepresented. For example, 72% of samples included elementary school students
compared with 8% for high school students. Hence, for these RCTs, the U.S. PreK–12
mathematics education research community has largely prioritized early childhood and
elementary school learning.

The mathematics interventions were most often instructional or pedagogical strategies
(50%) and replacement curriculum units (40%) and least often supplemental time
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interventions such as tutoring outside of normal classroom instructions (10%).7

Information about implementation fidelity was often not reported (50%), but when it
was reported, the study authors usually judged it to be high (72%). Most interventions
lasted longer than 4 h (80%) and longer than 4weeks (77%).

Regarding outcome characteristics, most measures were administered immediately fol-
lowing completion of the intervention (81%), and most measures were researcher-gener-
ated (57%) rather than standardized measures (42%). The outcome content domain also
demonstrated the field’s focus on young children—most measures assessed understand-
ing of number sense and basic arithmetic (64%). The next most common category was
algebra or prealgebra measures (24%).

The studies were distributed geographically across all major U.S. regions (e.g., West,
Northeast), usually within urban settings (72% of the time when information on the
locale was reported), although suburban and rural settings were also common (45% and
33%, respectively8). Most studies were published between 2010 and 2019 (69%).

Meta-Analytic Results

The unadjusted random effects average effect was 0.31 (SE¼ 0.03, df¼ 170.36, p< .01,
95% CI [0.26, 0.37]), and heterogeneity was large (s¼ 0.47, 95% CI [0.37, 0.58], based
on combining the between-study and within-study heterogeneity parameter estimates).
The estimated middle 95% of true underlying effects (i.e., the 95% prediction interval)
was between �0.60 to 1.23. Based on the average effect and overall heterogeneity, the
probability that a random mathematics intervention effect has a positive impact is 75%
(95% CI [71%, 78%]).9 The probability for having an effect of at least 0.10 and 0.25
standard deviations is 68% (95% CI [64%, 71%]) and 55% (95% CI [52%, 59%]),
respectively.

As shown in Figure 2 and Table 3, the unconditional means and distributions were
similar across the three broad intervention types of curriculum (g¼ 0.31), pedagogical/
instructional (g¼ 0.32), and supplemental time (g¼ 0.35) interventions. Importantly,
however, other study characteristics could vary across intervention types (e.g., use of
standardized versus research-generated measures), which could distort the interpretation
of these unconditional means; the following results suggest that supplemental time inter-
ventions may have larger effects than the other two types after controlling for poten-
tial confounds.

As a first step in our exploration of moderators, we examined the effects of each of
the MUTOS components, always controlling for the methods block (see Table 4 for the
estimated residual heterogeneity values from the different moderator models). The
methods block included outcome type (i.e., standardized versus researcher-generated
measure); publication status; National Center for Education Evaluation and Regional

7The primary intervention type was always coded; thus, if a curriculum intervention also included some pedagogical
strategies, it was only coded as a curriculum intervention.
8Studies often included schools from more than one than locale setting (e.g., urban and suburban), thus, these
percentages sum to greater than 100%.
9This estimate assumed that the effect distribution is normally distributed with a mean of 0.31 and a standard deviation
of 0.47 (see Mathur & VanderWeele, 2019). We used cluster bootstrapping sampling at the study level, not effect size
level, to compute the confidence intervals (see the Methods section for further detail).
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Assistance (NCEE) trail status; assumed correlation10; WWC attrition and baseline
equivalence; and level of random assignment. Only one of these methods moderators
was statistically significant: outcome type (see Table 5). Average effects were larger for
research-generated than standardized measures (g¼ 0.45 and 0.15, respectively). All

Figure 2. The effect size distribution by mathematics intervention type. The outer shaded boxes show
the 95% prediction intervals, the estimated middle 95% of true underlying effects. The inner shaded
boxes show the 95% confidence intervals, represented uncertainty in the overall mean estimate. The
thick gray lines show the weighted means from random-effects models. This graph is intended as a
descriptive summary of unconditional means (see the Results section text for more description of dif-
ferences in conditional vs. unconditional means).

Table 3. Random-effects meta-analyses conducted separately by intervention type.
Intervention Type g SE m k df p s 95% Prediction interval

Curriculum 0.31 0.04 83 443 70.93 <.01 0.46 [�0.60, 1.21]
Pedagogical/Instructional 0.32 0.05 85 553 75.22 <.01 0.50 [�0.66, 1.29]
Supplemental Time 0.35 0.08 24 113 19.76 <.01 0.38 [�0.40, 1.11]

Note. These statistics come from random-effects meta-analyses estimated separately by mathematics intervention type.
The standard errors were adjusted for effect size dependencies using robust variance estimation. g ¼ average effect
size, SE ¼ standard error of the average effect sizes, m ¼ number of studies, k ¼ number of effect sizes, df ¼ degrees
of freedom, p ¼ significance level for the mean being different from 0, s ¼ estimated standard deviation of the true
underlying effect sizes, 95% prediction interval¼ estimated middle 95% of the true underlying effect sizes.

10Assumed correlation reflects whether a correlation was imputed in calculating the effect size, which applies to three
scenarios: (1) standard deviations for pre-post gain scores were reported, which had to be corrected; (2) the effect size
was based on an ANCOVA F-test statistic, but the model R2 value was not reported; and (3) the effect size was based
on an unstandardized regression coefficient and its standard error, but the posttest standard deviation was not
reported. In total, this designation applied to 10 of 1,109 effect sizes (1%).
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Table 4. Meta-regression results for overall blocks of moderators.
Model Total s sB sW p R2

No moderators 0.47 0.30 0.36 – –
Methods only 0.46 0.30 0.35 <.01a 5.1%
Methodsþ Sample 0.45 0.29 0.34 .80 10.8%
Methodsþ Intervention 0.45 0.29 0.35 .21 7.5%
MethodsþOutcome 0.45 0.29 0.35 .81 5.8%
Methodsþ Setting 0.46 0.30 0.34 .76 4.4%
Methodsþ Selected Moderators 0.44 0.28 0.35 .01 10.2%

Note. The first column (s) is an estimate of the total residual effect heterogeneity (i.e., variability in the true underlying
effect sizes not accounted for by included moderators). The total s incorporates both the between-study heterogeneity
sB and within-study heterogeneity sW where ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2B þ s2W

p
. The relative partitioning of variance to sB versus sW should

be interpreted cautiously because it depended heavily on the assumed within-sample correlation, though the total s
estimates were more robust (see Table S1 in the supplemental materials).
The p values are based on multivariate Wald tests assessing whether the added group of moderators were
significant. The R2 is the percentage reduction in estimated effect variance compared with the random-effects model
(first row). The reported heterogeneity values (s) represent standard deviations, rather than variances, so that they are
on the same scale as effect size estimates. However, the R2 values were based on reduction in variances (s2).
aThe p value for the methods only moderators assessed the significance of methods moderators, not controlling for any
other moderators. However, all other p values assessed the significance of other groups of moderators (e.g., sample
moderators) after controlling for methods moderators.

Table 5. Meta-regression results for methods-only moderators.
Moderator Mean SE m k df p

Outcome type 40.21 <0.01
Researcher-generated measure 0.45 0.05 123 639 109.70
Standardized achievement measure 0.15 0.05 107 470 83.66

Publication status 99.65 0.48
Unpublished 0.29 0.05 74 345 54.25
Published 0.34 0.04 117 764 105.92

NCEE trial 16.19 0.43
Not an NCEE trial 0.33 0.03 177 1048 149.15
NCEE trial 0.27 0.07 14 61 14.42

Assumed correlationa 2.81 0.39
Not assumed 0.32 0.03 189 1099 152.65
Assumed 0.21 0.11 5 10 2.79

Attrition and baseline equivalence 190.00b 0.73
Low-attrition RCT 0.30 0.04 45 255 36.88
Baseline equivalence satisfied 0.34 0.04 68 292 52.82
Neither standard satisfied 0.32 0.04 128 562 107.06

Level of random assignment 190.00b 0.98
Student 0.32 0.04 93 547 75.59
Teacher 0.33 0.05 67 379 58.32
School 0.33 0.08 33 183 24.50

Note. The first results column (Mean) reports conditional means, which are the predicted values (Hedges’ g) from a mul-
tivariable, mixed-effects meta-regression model that simultaneously controlled for all the listed moderators (e.g., average
effect size for student-level assignment when the other moderators were fixed at their observed means). The p values
assess the statistical significance of a single moderator or groups of moderators (but not whether individual conditional
means for categorical moderators differed from 0). m ¼ number of studies, k ¼ number of effect sizes, df ¼ degrees
of freedom.
aAssumed correlation reflects whether a correlation was imputed in calculating the effect size, which applies to three
scenarios: (1) standard deviations for pre-post gain scores were reported, which had to be corrected; (2) the effect size
was based on an ANCOVA F-test statistic, but the model R2 value was not reported; and (3) the effect size was based
on an unstandardized regression coefficient and its standard error, but the posttest standard deviation was
not reported.
bMethodological guidance currently does not exist for computing the RVE-adjusted degrees of freedom for multigroup F
tests when using multiple imputation (Pustejovsky, 2017). For this reason, we used m – 1 as the denominator degrees
of freedom as a naïve F test, where m is the number of studies.
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methods moderators were retained as covariates, regardless of their statistical signifi-
cance, in the following substantive UTOS moderator models.

The elements of the “U” block (which included sample grade level, gender, special
education status, English learner status, and economic disadvantage) did not signifi-
cantly explain effect heterogeneity on their own (see Table 6). The “T” block (which
included intervention type, training method, length, delivery mechanism, and breadth)
had two elements with p < .10: intervention type and delivery mechanism (see Table 7).
Supplemental time (g¼ 0.55) interventions had larger average effects than curriculum
and pedagogical/instructional interventions (g¼ 0.33 and 0.26, respectively), and
teacher- and interventionist-delivered interventions (both g¼ 0.37) had larger average
effects than technology-delivered interventions (g¼ 0.11). The elements from the “O”
block (which included outcome domain, outcome-intervention alignment,11 and out-
come timing) did not significantly explain effect heterogeneity (see Table 8). The only
element of the “S” block (which included urbanicity, geographic region, and publication
year) that had p < .10 was publication decade (b ¼ �0.14), indicating that effects from
older mathematics intervention studies were larger than effects from more recent studies
(see Table 9).

After examining each block independently, controlling for methods confounds, we
created a combined MUTOS meta-regression model (see Method sections for details on
the model building process). Table 10 shows results from the combined moderator
mixed-effects model that included moderators that had p < .10 in the intermediate
UTOS block models and all methods moderators (regardless of statistical significance).
In this combined meta-regression model, four MUTOS moderators were significant at p
< .05: intervention type, intervention delivery, publication year, and outcome type.
Average effects were larger for supplemental time interventions (g¼ 0.53) than curricu-
lum or pedagogical/instruction interventions (g¼ 0.34 and 0.27, respectively); teacher
and interventionist delivery (g¼ 0.37 and 0.39, respectively) than technology delivery
(g¼ 0.12); and earlier than later publication decades (b ¼ �0.14). In addition,

Table 6. Meta-regression results for sample demographics moderators.
Moderator b SE df p

Average grade level� �0.02 0.02 25.10 0.13
Prop. male� 0.02 0.22 2.74 0.94
Prop. white� 0.01 0.21 3.91 0.95
Prop. special education� 0.02 0.06 6.12 0.77
Prop. English language learner� �0.00 0.08 3.61 0.96
Prop. economically disadvantaged� �0.01 0.09 3.62 0.89

Note. The first results column (b) reports regression coefficients for these continuous moderators, controlling for the
other listed moderators. This model also controlled for methods moderators (e.g., level of random assignment), which
are not listed here (but see Table 5).�Indicates regression coefficient rather than conditional mean.

11Outcome-intervention alignment was operationalized as the proportion of overlap between the outcome domains
covered in the outcome measure and the content covered in the intervention. For example, if a study used an outcome
measure that measured number sense and basic operations, but the intervention focused only on number sense, the
alignment score would be 0.50. If the intervention had focused on both number sense and basic operations, the
alignment score would have been 1.0. If the intervention had not focused on either number sense or basic operations,
the alignment score would have been 0.0.
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Table 7. Meta-regression results for intervention moderators.
Moderator Mean or b� SE m k df p

Intervention type 190.00a 0.05
Curriculum 0.33 0.04 83 443 63.21
Pedagogical/Instructional 0.26 0.05 85 553 69.48
Supplemental 0.55 0.11 24 113 25.97

Intervention training 190.00a 0.44
None or not reported 0.32 0.08 67 376 50.21
One-time training 0.26 0.06 58 353 47.06
Infrequent ongoing training 0.36 0.06 38 193 37.90
Frequent ongoing training 0.40 0.07 30 187 27.84

Intervention length
Number of hours� �0.00 0.00 – – 13.86 0.97
Number of weeks� �0.00 0.00 – – 28.58 0.21

Intervention delivery 190.00a 0.03
Teacher 0.37 0.05 110 608 63.20
Technology 0.11 0.10 65 375 34.12
Interventionist 0.37 0.06 52 380 49.86

Intervention breadth score� �0.01 0.02 – – 15.19 0.76

Note. The first results column (Mean or b) reports conditional means for categorical moderators (e.g., intervention type)
and regression coefficients for continuous moderators (e.g., number of weeks). The conditional means for categorical
moderators are the predicted values (Hedges’ g) from a multivariable, mixed-effects meta-regression model that simul-
taneously controlled for all the listed moderators (e.g., average effect size for curriculum interventions when the other
moderators were fixed at their observed means). This model also controlled for methods moderators (e.g., level of ran-
dom assignment), which are not listed here (but see Table 5). The p values assess the statistical significance of a single
moderator or groups of moderators (but not whether individual conditional means for categorical moderators differed
from 0). m ¼ number of studies, k ¼ number of effect sizes, df ¼ degrees of freedom.�Indicates regression coefficient rather than conditional mean.
aMethodological guidance currently does not exist for computing the RVE-adjusted degrees of freedom for multigroup F
tests when using multiple imputation (Pustejovsky, 2017). For this reason, we used m – 1 as the denominator degrees
of freedom as a naïve F test, where m is the number of studies.

Table 8. Meta-regression results for outcome moderators.
Moderator Mean or b� SE m k df p

Outcome domain 190.00a 0.48
Basic mathematics 0.37 0.04 92 578 66.84
Rational numbers/Fractions 0.31 0.06 40 190 35.37
Algebra 0.24 0.05 61 216 50.12
Geometry 0.42 0.09 47 164 27.03
Measurement, data, and/or statistics 0.35 0.06 45 157 28.96

Outcome-intervention alignment� 0.04 0.11 – – 2.44 0.76
Outcome timing 190.00a 0.98
Midstream during intervention 0.37 0.11 14 33 8.61
Immediate posttest 0.33 0.03 172 898 135.82
Follow-up posttest 0.32 0.05 42 169 24.87
Combination of time periods 0.29 0.36 4 9 1.55

Note. The first results column (Mean or b) reports conditional means for categorical moderators (e.g., outcome type)
and regression coefficient for the continuous moderators (i.e., the outcome-intervention alignment score). The condi-
tional means for categorical moderators are the predicted values (Hedges’ g) from a multivariable, mixed-effects meta-
regression model that simultaneously controlled for all the listed moderators (e.g., average effect size for standardized
achievement outcomes when the other moderators were fixed at their observed means). This model also controlled for
methods moderators (e.g., level of random assignment), which are not listed here (but see Table 5). The p values assess
the statistical significance of a single moderator or groups of moderators (but not whether individual conditional means
for categorical moderators differed from 0). m ¼ number of studies, k ¼ number of effect sizes, df ¼ degrees
of freedom.�Indicates regression coefficient rather than conditional mean.
aMethodological guidance currently does not exist for computing the RVE-adjusted degrees of freedom for multigroup F
tests when using multiple imputation (Pustejovsky, 2017). For this reason, we used m� 1 as the denominator degrees
of freedom as a naïve F test, where m is the number of studies.
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researcher-generated measures (g¼ 0.45) continued to yield much larger average effects
than standardized measures (g¼ 0.15), by a factor of almost three.

Robustness of the MUTOS Model

We compared the performance of the MUTOS meta-regression model to a machine
learning model (random forest) in predicting effect sizes (van Lissa, 2017, 2020). We
used leave-one-out cross-validation to compute R2 values to ensure a fair comparison
across model type (see the supplemental materials for more detail). In short, the predic-
tions for a study’s effect sizes were based on models that did not include that study’s
effect sizes in the model estimation. We repeated this process for all included studies,
yielding two sets of predictions (one based on meta-regression and the other based on
machine learning). We then computed R2 values based on the reduction of effect het-
erogeneity when using these predictions.

Results indicated that both models provided useful predictions of effect sizes, even
when using rigorous cross-validation to assess model performance. However, the ran-
dom forest model (cross-validated R2 ¼ 13%) explained more heterogeneity than the
MUTOS meta-regression model (cross-validated R2 ¼ 8%). That is, the machine learn-
ing model identified additional information in the coded moderators that helped predict
effect sizes (see Figure S2 in the supplemental materials for variable import-
ance rankings).

Regarding specific moderators, the two modeling approaches strongly agreed that the
best predictor of effect heterogeneity was outcome type (i.e., larger effect sizes for
researcher-generated than standardized measures). The models also agreed that effect
sizes were smaller, on average, for technology-delivered interventions than other inter-
vention delivery methods.

Table 9. Meta-regression results for setting moderators.
Moderator Mean or b� SE m k df p

Urbanicity 190.00a 0.75
Suburban 0.40 0.07 51 299 34.14
Urban 0.31 0.05 82 482 66.88
Rural 0.32 0.10 39 222 18.78

U.S. region 190.00a 0.90
West 0.34 0.07 35 206 27.91
Midwest 0.26 0.09 30 188 19.49
Southwest 0.39 0.09 41 260 24.31
Northeast 0.35 0.08 51 364 36.61
Southeast 0.29 0.06 64 326 36.03

Publication decade� �0.14 0.07 – – 35.74 0.05

Note. The first results column (Mean or b) reports conditional means for categorical moderators (i.e., urbanicity and U.S.
region) and regression coefficient for the continuous moderator (i.e., publication year). The conditional means for cat-
egorical moderators are the predicted values (Hedges’ g) from a multivariable, mixed-effects meta-regression model that
simultaneously controlled for all the listed moderators (e.g., average effect size for urban samples when the other mod-
erators were fixed at their observed means). This model also controlled for methods moderators (e.g., level of random
assignment), which are not listed here (but see Table 5). The p values assess the statistical significance of a single mod-
erator or groups of moderators (but not whether individual conditional means for categorical moderators differed from
0). m ¼ number of studies, k ¼ number of effect sizes, df ¼ degrees of freedom.�Indicates regression coefficient rather than conditional mean.
aMethodological guidance currently does not exist for computing the RVE-adjusted degrees of freedom for multigroup F
tests when using multiple imputation (Pustejovsky, 2017). For this reason, we used m – 1 as the denominator degrees
of freedom as a naïve F test, where m is the number of studies.

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 21

https://doi.org/10.1080/19345747.2021.2009072
https://doi.org/10.1080/19345747.2021.2009072


The two modeling approaches also provided partial agreement on the role of average
grade level, though the random forest model suggested additional nuance. Grade level
strongly predicted effect sizes in the random forest model (i.e., ranked within the top 3
most important predictors), but the relationship was nonlinear (see Figure S3 in the
supplemental materials). Average effects declined from Grades 3 to 7, representing the
transition from upper elementary school to middle school. The average effect size was
more stable for other grade level ranges. This result provided some agreement with the
MUTOS modeling approach, where higher grade levels tended to predict weaker effect

Table 10. Moderator results from mixed-effects meta-regression model.
Moderator Mean or b� SE m k df p

UTOS moderators
Intervention type 190.00b 0.04
Curriculum 0.34 0.04 83 443 66.49
Pedagogical/Instructional 0.27 0.04 85 553 68.52
Supplemental 0.53 0.10 24 113 24.07

Intervention delivery 190.00b 0.01
Teacher 0.37 0.05 110 608 64.03
Technology 0.12 0.08 65 375 30.76
Interventionist 0.39 0.06 52 380 48.11

Publication decade� �0.14 0.06 – – 36.23 0.04
Methods Moderators
Outcome type 39.80 <0.01
Researcher-generated measure 0.45 0.05 123 639 101.41
Standardized achievement measure 0.15 0.05 107 470 76.08

Publication status 87.69 0.36
Unpublished 0.29 0.05 74 345 53.33
Published 0.34 0.04 117 764 99.37

NCEE trial 17.72 0.28
Not an NCEE trial 0.33 0.03 177 1048 124.10
NCEE trial 0.25 0.07 14 61 15.78

Assumed correlation 2.84 0.27
Not assumed 0.33 0.03 189 1099 128.34
Assumeda 0.18 0.11 5 10 2.81

Attrition and baseline equivalence 190.00b 0.75
Low-attrition RCT 0.31 0.04 45 255 37.62
Baseline equivalence satisfied 0.35 0.04 68 292 50.66
Neither standard satisfied 0.32 0.04 128 562 94.22

Level of random assignment 190.00b 0.74
Student 0.32 0.05 93 547 59.51
Teacher 0.31 0.05 67 379 62.59
School 0.38 0.08 33 183 32.05

Note. The first results column (Mean or b) reports conditional means for categorical moderators (e.g., intervention type)
and regression coefficients for continuous moderators (i.e., number of weeks and publication year). The conditional
means for categorical moderators are the predicted values (Hedges’ g) from a multivariable, mixed-effects meta-regres-
sion model that simultaneously controlled for all the listed moderators (e.g., average effect size for curriculum interven-
tions when the other moderators were fixed at their observed means). The standard errors (SE) were adjusted for effect
size dependencies using robust variance estimation. The p values assess the statistical significance of a single moderator
or groups of moderators (but not whether individual conditional means for categorical moderators differed from 0). m
¼ number of studies, k ¼ number of effect sizes, df ¼ degrees of freedom.�Indicates regression coefficient rather than conditional mean.
aAssumed correlation reflects whether a correlation was imputed in calculating the effect size, which applies to three
scenarios: (1) standard deviations for pre-post gain scores were reported, which had to be corrected; (2) the effect size
was based on an ANCOVA F-test statistic, but the model R2 value was not reported; and (3) the effect size was based
on an unstandardized regression coefficient and its standard error, but the posttest standard deviation was
not reported.
bMethodological guidance currently does not exist for computing the RVE-adjusted degrees of freedom for multigroup F
tests when using multiple imputation (Pustejovsky, 2017). For this reason, we used m – 1 as the denominator degrees
of freedom as a naïve F test, where m is the number of studies.
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sizes (b ¼ �0.02) in the intermediate “U – Units” meta-regression model (Table 6).
However, this overall linear trend was not statistically significant (p ¼ .13) and did
not meet our chosen p ¼ .10 threshold for inclusion in the combined MUTOS meta-
regression model (Table 10). Nevertheless, when considered together, these results over-
all suggest that average intervention effects may decline in later grade levels, but the
relationship may be nonlinear.

The random forest model also suggested additional nuance about intervention
length (i.e., the number of weeks students were exposed to the intervention). Similar
to grade level, intervention length ranked within the top 3 most important modera-
tors for improving effect size predictions in the random forest model (see Figure S2
in the supplemental materials). Having a medium length of about one half of a
school year (�15–20weeks) predicted the strongest intervention effects, especially for
researcher-generated measures (see Figure S3 in the supplemental materials; in con-
trast, longer interventions generally had weaker effects for standardized measures
with no peak in average effects for medium-length interventions). Compared to these
medium-length interventions, the model predicted weaker average effects for shorter
interventions (e.g., lasting less than one month) and longer interventions (e.g., lasting
one full school year). These potential nonlinearities may help explain why interven-
tion length was not retained in the MUTOS model building process (which only
tested for an overall linear effect), despite emerging as a key predictor in the random
forest model.

The random forest model also suggested caution about the robustness of results for
two moderators that were statistically significant in the MUTOS meta-regression
model: (a) publication year (decreasing with time) and (b) intervention type (larger
for supplemental time interventions). Both were significant in the combined MUTOS
meta-regression model and their corresponding intermediate models. However, the
random forest model determined that these moderators did not tend to improve
effect size predictions; an automated algorithm did not include these moderators in
the final random forest model (for details on this variable selection algorithm, see
van Lissa, 2020). One explanation for this discrepancy might be potential confounds
with other moderators. The random forest model might have captured other nonli-
nearities or interactions that covaried with publication year and supplemental time
interventions, potentially leaving those moderators as no longer useful predictors of
effect sizes (despite emerging as important in the MUTOS meta-regression model).
For example, supplemental time interventions tend to be more intensive than other
interventions, both in terms of the average number of weeks (27weeks) and average
number of hours (60 h) compared to other intervention types (19weeks and 20 h,
respectively). The random forest model might have accounted for these confounds in
intervention intensity differently, potentially explaining the diverging results about
average differences in effect sizes across intervention type.

Selective Reporting Bias Analyses

Although our literature search aimed to systematically find unpublished studies, our
results could nevertheless be influenced by selective reporting (e.g., authors publishing
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only studies or outcomes with significant effects). Of the 191 RCTs included in our
analyses, 39% came from gray literature sources such as doctoral dissertations and con-
ference papers.

As detailed in the supplemental materials, we examined selective reporting bias (i.e.,
publication bias) by both (a) comparing average effects from published versus unpub-
lished studies and (b) testing and adjusting for small-study effects (e.g., small studies
with small observed effects may not be published due to lack of statistical significance).
Both approaches yielded similar conclusions. Without controlling for any moderators,
they provided some suggestive evidence of selective reporting bias (e.g., smaller average
effects for unpublished versus published studies and larger versus smaller studies). For
example, unpublished studies had somewhat smaller average effects than published stud-
ies (g¼ 0.24 versus 0.36, respectively), which was a statistically significant difference
(b¼ 0.12, SE¼ 0.06, p ¼ .05).

The evidence supporting selective reporting bias largely disappeared, however, once
we adjusted for the MUTOS moderators in Table 10. Confounds other than selective
reporting might therefore account for results such as published-unpublished differences.
For example, unpublished studies used standardized measures more often than pub-
lished studies (54% versus 37% of effect sizes, respectively). The larger half of studies
(based on a median split in effect size variance) also used standardized measures more
often than the smaller half of studies (56% versus 30%, respectively). Differences in
using standardized achievement measures might therefore partly account for the some-
what smaller average effects from unpublished studies and larger studies.

The supplemental materials describe these findings in more detail, along with results
from another selective reporting analysis method (i.e., selection models; Vevea &
Hedges, 1995) and sensitivity analyses that explored the consequences of varying magni-
tudes of selective reporting bias (Mathur & VanderWeele, 2020; see also Vevea &
Woods, 2005). Selection models yielded inconclusive results (i.e., implausible adjusted
mean estimates that were highly sensitive to model specifications). The sensitivity analy-
ses nevertheless suggested our meta-analytic estimates of intervention effects were robust
to plausible magnitudes of reporting bias. Overall, these selective reporting analyses sup-
port confidence in our estimates of average mathematics intervention effects, especially
after accounting for potential confounds (such as use of standardized vs. researcher-
generated measures in published vs. unpublished studies).

Discussion

This study took a high-level review of a quarter century worth of experimental research
in U.S. PreK-12 mathematics education, focusing on understanding variation in math-
ematics intervention effects. The results of our review and synthesis indicate that the
middle 95% of intervention effects tend to vary between about �0.60 and 1.23 standard
deviations. Although the results indicate wide heterogeneity, they also tell an important
story about the probability of positively impacting student learning outcomes. As noted
in the Results section, the probability that a random mathematics intervention effect has
a positive impact is 75%, and the probability that the intervention effect is at least 0.10
and 0.25 standard deviations is 68% and 55%, respectively. This high-level review of
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effects is an important perspective, especially when researchers and policymakers often
infer that “nothing works.”

While our study was able to identify several consistent sources of effect heterogeneity,
largely from methodological and intervention characteristics, the effect sizes in our syn-
thesis were generally weakly related to theoretically important characteristics of the sam-
ples, outcomes, and settings. On the one hand, these results describe a general
robustness of mathematics intervention effects for different kinds of learners in different
contexts and for different content areas. On the other hand, our analyses explained
about 10% of intervention heterogeneity, which may indicate that we were likely unable
to observe and systematically code other meaningful study characteristics.

Nevertheless, the explanatory power of our combined MUTOS meta-regression was
strong, relative to other large-scale meta-analyses in STEM subject areas. As example
comparisons, we downloaded the raw data for two large meta-analyses on science edu-
cation intervention studies (Taylor et al., 2018) and computer-based scaffolding in
STEM education (Belland et al., 2017). We found that the percentage of explained het-
erogeneity was 2% or less in those meta-analyses, based on using the moderators that
the original meta-analysis authors had coded for. In contrast, a more focused meta-ana-
lysis on STEM professional development interventions explained a much higher percent-
age of heterogeneity, 30% or higher, depending on the model (Lynch et al., 2019).
However, the unconditional effect heterogeneity was also much smaller in the Lynch
et al. (2019) study (0.19 standard deviations) compared to our meta-analysis (0.47 stand-
ard deviations), meaning that the same change in absolute heterogeneity will yield a
larger change in percentage heterogeneity explained. Interestingly, one of the most
explanatory study features that Lynch et al. found was outcome measure type (i.e.,
researcher-developed vs. standardized), consistent with our results discussed in the fol-
lowing sections.

In the following sections, we connect the results of our synthesis to those of related,
and recent, syntheses in STEM education. We further describe the limitations of this
study and provide a link to an online application that allows users to download and
interact with the study data directly (https://osf.io/f9gud/?view_only=c97ba1316
ff44606b8954d686e4d2d8b).

Methodological Characteristics

The most explanatory study feature that our analyses identified was outcome measure
type: whether the measure was researcher-developed or standardized. In our final
MUTOS meta-regression model, researcher-developed measures had effects that were
0.30 standard deviations larger on average than standardized measures. Other
recent syntheses in STEM education have found similar results (for a broader review of
syntheses in education, see Wolf, 2021). Compared to standardized measures,
researcher-generated measures yielded larger effect sizes by 0.17 standard deviations for
mathematics intelligent tutoring systems (Steenbergen-Hu & Cooper, 2013), 0.26 stand-
ard deviations for science education interventions (Taylor et al., 2018), and 0.27 stand-
ard deviations for STEM professional development programs (Lynch et al., 2019). These
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differences remained after controlling for other study features in meta-regres-
sion models.

Wolf (2021) discussed various hypotheses for the stronger effects for researcher-generated
measures, including differences in narrow versus broad measurement constructs, implemen-
tation fidelity, developer conflicts of interest, and reliability and validity. One hypothesis we
investigated was whether researcher-developed measures were better aligned to the interven-
tions under investigation (i.e., we coded for the fraction of outcome domains in the outcome
measure that were also covered in the intervention; see Footnote 18 for details). We found
that the differences in average effect sizes from researcher-generated measures versus stand-
ardized measures remained even after adjusting for intervention-outcome alignment.
However, our indicator for alignment was based on broad outcome domains such as
“algebra” or “geometry,” which may have been too coarse to pick up on important finer-
grained distinctions (e.g., subtopic in algebra such as linear equations).

Variation in other methodological study features did not strongly correspond to vari-
ation in effect magnitude, which is an encouraging indication of methodological robust-
ness. For example, when adjusting for other features, studies with high attrition and
baseline imbalance on pretest measures, as defined by the WWC, had roughly compar-
able average effect estimates as those that had low attrition and demonstrated baseline
equivalence on the pretest measures. Similarly, we did not observe substantial differen-
ces in effect size across different levels of random assignment (i.e., school, teacher, stu-
dent). Not adjusting for moderator, published studies had somewhat larger effect sizes
than unpublished studies, a finding that emerges in many research syntheses; however,
the difference was not statistically significant after adjusting for other features, consistent
with our selective reporting bias analyses.

Sample Characteristics

Results suggested that average effects tended to decline in higher student grade levels.
However, the empirical evidence for this decline had some sensitivity to the modeling
approach. The strongest evidence came the from the machine learning approach (i.e.,
random forest model) which automatically modeled nonlinearities and interactions. This
model placed student grade level within the top 3 moderators that best improved effect
size predictions, with average effects declining most rapidly in the transition from elem-
entary school to middle school (roughly Grades 3–7). The (linear) meta-regression also
found a negative trend for grade level (b ¼ �0.02, p¼ 0.13), though the coefficient was
not statistically significant at p < .10, potentially due to unmodeled nonlinearities.

The grade-related trends are consistent with other research indicating that students’
mathematics learning may be most malleable in earlier ages. For instance, in business-
as-usual instruction, average one-year growth in student mathematics achievement is
1.14 standard deviations from kindergarten to Grade 1, compared to only 0.22 standard
deviations from Grades 8 to 9 (Bloom et al., 2008; Table 3). Relatedly, some meta-analy-
ses have found some suggestive evidence for stronger intervention-comparison effects in
earlier grade levels (e.g., Cheung & Slavin, 2013, 2016; Nickow et al., 2020), though this
difference has not always consistently emerged (e.g., Taylor et al., 2018). For example,
one broad review (Cheung & Slavin, 2016) found larger effects in elementary school
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(g¼ 0.20) than secondary school (g¼ 0.17), though the difference was not significant (p
¼ .06). Our results suggest a nuanced relationship in which specific transition points
(e.g., elementary to middle school) may be especially important. However, our results
should be interpreted cautiously given the exploratory nature of the random forest
model. We encourage future primary research and meta-analyses to investigate these
differences more thoroughly.

Despite the grade level findings, effect sizes were largely unrelated to other sample
characteristics such as study compositions of gender, race, special education status,
English learner status, and economically disadvantaged status. This result has at least
three possible explanations. First, the combined MUTOS meta-regression model has
limited statistical power for individual model coefficients. The estimated variances
are adjusted both for effect size dependencies and for distributional violations (e.g.,
non-normal or imbalanced moderators). Furthermore, rates of missing data were
highest for sample demographics, decreasing precision and statistical power for
detecting those moderator effects. Second, Cooper and Patall (2009) note that
within-study moderators, especially those that are inherent to the individuals in the
study samples, do not necessarily translate to study-level moderators, which is known
as ecological fallacy. This is an important caveat when interpreting meta-analytic
results that rely on aggregations of individual-level characteristics. Third, other char-
acteristics of students, teachers, learning environments, and implementation may
have explained additional effect heterogeneity, but these characteristics were unob-
served or otherwise uncoded, such as emotional states (e.g., Barroso et al., 2021),
school climate (e.g., Kwong & Davis, 2015), and teacher credentials and experience
(e.g., Nye et al., 2004).

Intervention Characteristics

One intervention characteristic that was consistently related to effect magnitude was
intervention delivery mechanism. In the combined MUTOS meta-regression model,
teacher- and interventionist-delivered programs (gs ¼ 0.37 and 0.39, respectively) had
average effects that were about three times as large as effects from technology-delivered
programs (g¼ 0.12). The random forest model provided converging evidence for this
difference. The conditional mean of 0.12 standard deviations for technology-delivered
programs is similar to the average effect of 0.15 standard deviations that Cheung and
Slavin (2013) found for similar interventions.

The weaker effect for technology-delivered mathematics programs is an important
and timely finding given the recent context of the COVID-19 pandemic. In 2020, the
pandemic forced most large U.S. school districts to rapidly switch to fully remote educa-
tion, disrupting the learning of millions of U.S. children (Sahni et al., 2021). One
hypothesis for the intervention delivery differences we found (based on studies prior to
the pandemic) is that online or virtual instruction may result in less sustained student
engagement than interventions involving teachers, aides, or other instructional staff
(Blasiman et al., 2018). It is also important to note that technology-delivered programs
are a broad, heterogeneous group of interventions, which can include in-person instruc-
tion (e.g., teachers instructing students how to use computer learning programs during
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normal classroom hours). Nevertheless, at a broad level, technology delivery is associ-
ated with weaker effects, highlighting the critical importance of understanding what
types of technology delivery can work to improve student mathematics achievement.

Two other intervention characteristics that our analyses identified as potentially explana-
tory were intervention type and intervention length. We describe these as “potentially
explanatory” because the results were sensitive to modeling strategy. Regarding intervention
type, supplemental time interventions (g¼ 0.53) had larger average effects than curriculum
interventions (g¼ 0.34) or instructional/pedagogical interventions (g¼ 0.27), after adjusting
for other study features in the combined MUTOS meta-regression model. This result is simi-
lar to Cheung and Slavin’s (2013) finding that supplemental computer assisted programs
had larger average effects than educational technology programs integrated into regular
mathematics instruction (see also Nickow et al., 2020, for related evidence on comparatively
large effects for tutoring programs; Kraft & Falken, 2021). One explanation for these findings
is that supplemental time programs simply provide more opportunities to learn (i.e., more
instructional time overall). Another explanation is that supplemental time programs are
more intensive and sustained than other programs, as supported by our coded data.
Supplemental time interventions lasted approximately 60h over 27weeks on average, com-
pared to 24h over 21weeks for curriculum interventions and 16h over 17weeks for instruc-
tional interventions. The evidence for differences in average effects across these intervention
types is tentative, however, because the random forest model did not select intervention type
as a moderator that improved effect size predictions. However, this result only emerged in
the primary MUTOS model; it was not identified as a key moderator in our exploratory ran-
dom forest model.

Conversely, the combined MUTOS model did not identify intervention length as a
key moderator, but the exploratory random forest model did. The difference in results
from the meta-regression model may stem from the complex relationship found for
intervention length. In the random forest model, average effects were largest for
medium-length interventions lasting approximately one-half of a school year (about
15–20weeks). Researcher-generated measures drove this effect; in contrast, effects for
standardized measures tended to very slightly decline throughout with no peak in aver-
age effects for medium length. These results contrast with simple, intuitive predictions
that longer interventions should typically yield stronger effects. However, the results
partially align with other meta-analyses in education that typically find no moderation
by length (e.g., Kraft et al., 2018) or weaker effects for longer interventions (e.g.,
Dietrichson et al., 2017; Nelson & McMaster, 2019; Steenbergen-Hu & Cooper, 2013).
Future research should more thoroughly investigate the reasons for these potential dif-
ferences in effect sizes (e.g., whether researchers’ control of the testing environment
may explain the larger effects for medium-length interventions; see Cheung &
Slavin, 2013).

Outcome and Settings Characteristics

For outcome characteristics, the magnitude of average effects varied among the outcome
domains examined in this review, but the differences were not statistically significant.
For example, average effect sizes for algebra measures (g¼ 0.24) were about 0.18
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standard deviations smaller than for geometry domain (g¼ 0.42), but the difference was
not statistically significant. We also found little evidence of moderation for the timing
of outcome assessment or the level of alignment between outcomes and intervention
content. However, one key limitation is that only 15% of effect sizes were for follow-up
outcomes measured with some delay after the end of the intervention, offering limited
evidence on the longevity of the intervention effects.

For setting characteristics, the combined MUTOS meta-regression suggested that
effect sizes declined by 0.14 standard deviations on average for each additional decade.
A meta-analysis of K-12 technology-enhanced mathematics interventions found a simi-
lar trend across decades, though the differences were not significant (Cheung & Slavin,
2013; Table 4). One explanation for this result is increased methodological rigor and sci-
entific standards for causal inference research in mathematics education. That is,
changes in the cultural norms of scientific practice may help address previously unmiti-
gated sources of bias. Another explanation is that students are less responsive to inter-
vention than they were in earlier decades. For example, as more innovative programs
enter the mainstream, the counterfactual (or “business as usual”) might become increas-
ingly competitive with experimental programs. Another contributor might be changes in
mathematical standards and tests such as the introduction of the No Child Left Behind
Act in the early 2000s. However, this result was also not robust to modeling strategy as
the random forest model did not identify publication year as an important moderator,
adjusting for other study characteristics. As such, we caution against overinterpretation.

Limitations

Our review included 191 randomized controlled trials that covered a quarter century of
PreK-12 mathematics intervention research, along with systematically coding for meth-
ods, sample, intervention, outcome, and setting characteristics. The large scale of our
review was a key strength for exploring effect heterogeneity, offering greater statistical
power for moderator analyses than in smaller-scale reviews focusing on specific types of
mathematics interventions or subpopulations. The scale, however, also presented prac-
tical constraints. One of those constraints was being unable to code for more granular
study characteristics that might further explain effect heterogeneity, as one might in a
more focused or traditional meta-analysis. Research reporting was also a key challenge.
For example, most studies did not report how many special education, English learner,
or economically disadvantaged students were in their samples, limiting our ability to
understand broad relationships between mathematics intervention effects and sample
characteristics.

The comprehensiveness of study reporting practices was another limitation we
encountered. While the collective set of moderators used in our analyses explained
about 10% of the heterogeneity in mathematics intervention effects, we suspect that
most variation in intervention effects is likely due to idiosyncratic characteristics of the
studies that are rarely reported in a systematic way. For example, the counterfactual
conditions (operationalized as “business-as-usual” in this review) likely widely varied
across studies, but researchers rarely systematically measure and report a service
contrast in a way that is useful for meta-analysis. Also, although we coded for
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researcher-reported dispositions about implementation fidelity (i.e., whether the
researchers indicated the intervention was delivered as intended), there is likely far
more granular variation in effective implementation than what we were able to system-
atically code for (e.g., idiosyncratic study-specific aspects of implementation that cannot
be easily compared across studies in meta-analyses).

Alternative approaches to coding could also uncover further nuance. For example, we
chose to identify a primary intervention type for each study (i.e., curriculum, instruc-
tional, or supplemental time), rather than having a check-all-that-apply intervention typ-
ology. Identifying the primary type was not always immediately clear because some
interventions had multiple, relatively balanced, components. Lynch et al. (2019), for
example, coded for overlapping professional development intervention components and
found evidence of a small positive relationship with effect sizes, although the overall
results of their study are very similar to the results we found for pedagogical and
instructional interventions in this study.

We evaluated the robustness of our results by including two modeling approaches—
one based on a planned meta-regression using the MUTOS framework and the other
data-driven approach based on machine learning using automated algorithms. Including
both approaches strengthened our analyses, but the contrast revealed potential limita-
tions in the standard linearity assumptions for the MUTOS meta-regression approach.
Some moderators such as grade level or intervention length may not have simple linear
relationships with intervention effects. Using data-driven modeling strategies like the
one we used in this study provide new opportunities for researchers and meta-analysts
to evaluate the robustness of their planned modeling strategies (including linearity
assumptions), especially in large, complex, reviews like this one.

Though the large scale of our review was a strength, power to detect moderator
effects in meta-analysis tends to be low, even with many included studies (Hempel
et al., 2013, Hedges & Pigott, 2001). For this reason, we still presented conditional mean
effect sizes for each of moderators we examined (regardless of statistical significance) as
there is value in understanding the patterns of average effects across their levels, even if
they are estimated with varying degrees of precision. Failure to detect statistically signifi-
cant moderator effects should not be interpreted as strong evidence of no moderation,
especially for characteristics such as racial and socioeconomic demographics that had
major limitations due to missing study-reported information.

Last, we restricted our review to randomized experiments without known confounds,
strengthening the internal validity of the included evidence. But there is also a broader
evidence base of well-executed quasi-experimental designs that we did not capture.
Though quasi-experimental studies tend to produce larger effects than similar RCTs and
are more susceptible to selection bias (Cheung & Slavin, 2016), they can offer important
evidence for certain types of interventions, learners, or settings that may be underrepre-
sented in the studies we included.

Conclusions, Future Directions, and Open Science

A quarter century worth of experimental evidence shows that mathematics interventions
in U.S. PreK-12 education improve student learning across a wide range of program
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types, student demographics, and outcome domains. However, these intervention effects
also widely vary. Our analyses identified how specific aspects of the study characteristics
may help account for this heterogeneity, but much of the heterogeneity remains unex-
plained based on readily codable information in the study reports. To help others fur-
ther explore, we are sharing our coded data, codebook, and an interactive web
application with the public (https://airshinyapps.shinyapps.io/math_meta_database/).
Our team took one set of approaches to organizing and analyzing the evidence, and we
hope that this dataset may help answer a host of other questions that researchers and
decisionmakers may have. The web application allows users to explore the pool of math-
ematics intervention effects using evidence gap maps, data visualizations, and opportuni-
ties to construct customized meta-analyses. Users may also download the data to use as
they see fit. The application and dataset will be maintained and updated periodically by
the Methods of Synthesis and Integration Center (MOSAIC) at the American Institutes
for Research (https://www.air.org/centers/mosaic).
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